Respuestas
Respuesta:
Elegir el modelo de regresión correcto es tanto una ciencia como un arte. Los métodos estadísticos pueden ayudar a orientar en la dirección correcta pero, en última instancia, se deben de incorporar otras consideraciones.
Explicación:
Investigue lo que otros han hecho e incorpore esos hallazgos en la construcción de su modelo. Antes de comenzar el análisis de regresión, desarrolle una idea de cuáles son las variables importantes junto con sus relaciones, signos de coeficientes y magnitudes de efecto. Al basarse en los resultados de otros, es más fácil recopilar los datos correctos y especificar el mejor modelo de regresión sin la necesidad de la minería de datos.
Las consideraciones teóricas no deben descartarse basándose únicamente en medidas estadísticas. Después de ajustar su modelo, determine si se alinea con la teoría y si es posible haga ajustes. Por ejemplo, según la teoría, podría incluir un predictor en el modelo incluso si su valor p no es significativo. Si alguno de los signos del coeficiente contradice la teoría, investigue y cambie su modelo o explique la inconsistencia.