hallar el mayor de 2 numeros tales q su minimo comun divor sea 36 y su minimo comun multiplo sea 5148
Respuestas
Respuesta dada por:
24
Para empezar creo que te equivocaste y es el máximo común divisor…
Primero se descompone los valores en 36 y 5148 en factores sus factores primos:
36 = (2^2)(3^2)(1)
5148 = (2^2)(3^2)(11)(13)(1)
Sabemos que el m.c.d de varios números: es el mayor número que es divisor de todos ellos. Eso quiere decir que 36 forma parte de ambos números ya que es el mayor número que los divide.
Mientras que el m.c.m de varios números: es el menor número que contiene a cada uno de éstos como divisor.
Entonces 36x11= 396 ( número menor)
36x13= 468 (número mayor)
Puesto que son los dos números menores que contienen a 36 como máximo común divisor y como mínimo común múltiplo a 5148, siendo 468 el mayor de los dos numeros.
Primero se descompone los valores en 36 y 5148 en factores sus factores primos:
36 = (2^2)(3^2)(1)
5148 = (2^2)(3^2)(11)(13)(1)
Sabemos que el m.c.d de varios números: es el mayor número que es divisor de todos ellos. Eso quiere decir que 36 forma parte de ambos números ya que es el mayor número que los divide.
Mientras que el m.c.m de varios números: es el menor número que contiene a cada uno de éstos como divisor.
Entonces 36x11= 396 ( número menor)
36x13= 468 (número mayor)
Puesto que son los dos números menores que contienen a 36 como máximo común divisor y como mínimo común múltiplo a 5148, siendo 468 el mayor de los dos numeros.
Preguntas similares
hace 7 años
hace 7 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años