Dado la SEC x=2 y sabiendo que 0<x< π\2.Calcula Cos x/2
b) Siendo Cosec a=5/3 me Calcula Tan 2a
C)Si el cos∅=2/3 .Averigua sen∅/2
D) Dado Cosec a=3/2 con 0<a<π hallar sen 2a cos2a y tan 2a
E) Dado den a -√3/2 y teniendo en cuenta que 0°<x<90° averigua :sen a/2 ,cosa/2,vos @/2 ; tan a/2
Respuestas
Los valores de las razones trigonométricas solicitadas de ángulos medios y dobles son las siguientes:
a) cosx/2 = +-√3/2
b) tan2a = 24/7
c) sen∅/2= +-√6/6
d) sen2a = 4√5/9 ; cos2a= 1/9 ; tan2a= 4√5
e) cosα/2 =+-√3/2 ;senα/2 =+-1/2; tang α/2 = -√3/3
a) Sec x = 2 0<x< π\2 cos x/2 =?
Sec x = 1/cosx ⇒ cosx = 1/2
cosx/2 = +- √(( 1+cosx)/2)= +-√(( 1+1/2)/2) =+-√3/2
b) Coseca=5/3 tang2a=?
coseca= 1/sena ⇒ sena= 1/(5/3)= 3/5
Cosa= √( 1-sen²a) = √( 1-(3/5)²) = 4/5
tanga = sena/cosa= 3/5/4/5= 3/4
tan2a = 2tana/1-tan²a= 2*3/4/(1-(3/4)²) = 24/7
c) Cos∅ = 2/3 Sen∅/2 =?
Sen∅/2 = +-√(( 1-cos∅)/2)= +-√(( 1-2/3)/2) =+-√6/6
d) Cosec a=3/2 0<a<π sen2a=? cos2a=? tan2a=?
sena = 1/3/2= 2/3 cosa= √1- (2/3)²= √5/3
tana= 2/3/√5/3 = 2√5/5
sen2a= 2sena*cosa= 2*2/3* √5/3 = 4√5/9
cos2a= cos²a -sen²a=( √5/3)²- (2/3)²= 1/9
tan2a= 2tana/1-tan²a= 2* 2√5/5/(1-( 2√5/5)²) = 4√5
e) senα = -√3/2 0°<α<90
senα/2 =? cosα/2 =? tanα/2 =?
Cosα= √( 1- sen²α) = √( 1-(-√3/2 )²= 1/2
cosα/2 = +- √(( 1+cosα)/2)= +-√(( 1+1/2)/2) =+-√3/2
senα/2 = +-√(( 1-cosα)/2)= +-√(( 1-1/2)/2) =+-1/2
tang α/2 = senα/(1+cosα) = -√3/2/(1+1/2)= -√3/3
Respuesta:
............................