Respuestas
Respuesta:
Es indudable que la teoría de la evolución, enunciada por Charles Darwin a mediados del siglo X I X, provocó una revolución científica. Los conceptos de esta teoría, como el de selección natural, han permeado desde entonces casi todas las disciplinas científicas. Así, puede constatarse cómo han surgido áreas de estudio que van desde la evolución química prebiótica y la evolución molecular hasta la evolución tecnológica, pasando por ideas de la evolución aplicadas a las ciencias sociales y a las ciencias cognitivas. Algunas de estas “aplicaciones” han sido fructíferas, en tanto que otras han mostrado no ser apropiadas –como la idea de Marx, inspirada en Darwin, de considerar el desarrollo histórico de las formaciones sociales como una “historia natural”– o francamente grotescas –como la interpretación denominada “darwinismo social”.
Computación evolutiva
La computación evolutiva es una rama de la inteligencia artificial que involucra problemas de optimización combinatoria. Se inspira en los mecanismos de la evolución biológica.
Durante los años 50 se comenzaron a aplicar los principios de Charles Darwin en la resolución de problemas. Durante los años 60 y 70, varias corrientes de investigación independientes empezaron a formar lo que ahora se conoce como computación evolutiva.
La programación evolutiva nació en la década de 1960 y su creador fue Lawrence J. Fogel. Este desarrollo comenzó como un esfuerzo encaminado a crear inteligencia artificial basada en la evolución de máquinas de estado finitas.
Las estrategias evolutivas fueron propuestas por Ingo Rechenberg y Hans-Paul Schwefel en la década siguiente y su principal objetivo era el de optimizar parámetros.
Los algoritmos genéticos fueron propuestos por John H. Holland a mediados de esa década y su motivación inicial fue la de proponer un modelo general de proceso adaptable.
Algoritmos evolutivos
De manera general, la computación evolutiva toma como base las ideas de la evolución propuestas por Charles Darwin y los descubrimientos realizados por Gregor Mendel en el campo de la genética. Entre los principales aspectos a considerar en el diseño de algoritmos evolutivos se encuentran los siguientes:
1. La elección de una codificación (representación de las variables del problema en el algoritmo evolutivo) tiene un gran efecto en el tamaño del espacio de búsqueda y, por ende, en el tiempo y dificultad de resolución.
2. La función de desempeño (fitness function), la cual considera la función objetivo o función de la que se desea obtener el valor óptimo.
3. Los algoritmos evolutivos poseen diversos parámetros, los cuales deben ser cuidadosamente elegidos para obtener un buen desempeño y evitar problemas tales como la convergencia prematura.
Explicación: