Las placas de las motocicletas en Colombia tienen tres letras, dos números y finaliza con otra letra, como se muestra en la imagen. ¿Cuántas placas diferentes se pueden formar con este tipo de placa? Recuerda que hay 27 letras en el abecedario

Respuestas

Respuesta dada por: Andru321
5

Respuesta:

El total de placas que se pueden formar son 15.795.000 Placas

Explicación paso a paso:

Combinación: es la manera de tomar de un conjunto de n elementos k de ellos, sin importar el orden, la ecuación que cuenta la cantidad de combinaciones es:

Comb(n,k) = n!/((n-k)!*k!)

Permutación: es la manera de tomar de un conjunto de n elementos k de ellos, donde importar el orden, la ecuación que cuenta la cantidad de permutaciones es:

Pem(n,k) = n!/((n-k)!)

si n = k

Pem(n,n) = n!

De las 27 letras tomamos 3 sin importar el orden y de los 10 números tomamos 2:

Comb(27,3) = 27!/((27-3)!*3!) = 2925

Comb(10,2) = 10!/((10-2)!*2!)  =  45

Luego que tengo los 5 caracteres los permuto:

5! = 120

El total sera:

2925*45*120 = 15.795.000 Placas


caskijuancho: 27*27*27*10*10*27= 53'144.100
Preguntas similares