Respuestas
Respuesta:
Explicación paso a paso:
51. - (4a - 3b + 7a) = - (11a - 3b) = - 11a + 3b
52. - (4x + 2y - x) = - (3x + 2y) = - 3x - 2y
53. - (7 {x}^{2} - 4xy + y) + ( {x}^{2} + 5xy - 2y) = - 7 {x}^{2} + 4xy - y + {x}^{2} + 5xy - 2y = 8 {x}^{2} + 9xy - 3y53.−(7x
2
−4xy+y)+(x
2
+5xy−2y)=−7x
2
+4xy−y+x
2
+5xy−2y=8x
2
+9xy−3y
54. - (4 {a}^{2} - 5ab + b) + (7 {a}^{2} - 5ab + 3b) = - 4 {a}^{2} + 5ab - b + 7 {a}^{2} - 5ab + 3b = 3 {a}^{2} + 2b54.−(4a
2
−5ab+b)+(7a
2
−5ab+3b)=−4a
2
+5ab−b+7a
2
−5ab+3b=3a
2
+2b
55. - ( - (2z - x) + (y - 3z)) + (x + 3y - 5z) = - ( - 2z + x+ y - 3z) + x + 3y - 5z = 2z - x - y + 3z + x + 3y - 5z = 2y55.−(−(2z−x)+(y−3z))+(x+3y−5z)=−(−2z+x+y−3z)+x+3y−5z=2z−x−y+3z+x+3y−5z=2y
56. - ( - (4x - 5y) + (4y - 5z)) + (3z - 5y + 4x) = - ( - 4x + 5y + 4y - 5z) + 3z - 5y + 4x = 4x - 5y - 4y + 5z + 3z - 5y + 4x = 8x - 14y + 8z56.−(−(4x−5y)+(4y−5z))+(3z−5y+4x)=−(−4x+5y+4y−5z)+3z−5y+4x=4x−5y−4y+5z+3z−5y+4x=8x−14y+8z
57. + ( - (2 {a}^{2} {b}^{2} - 5 {a}^{2} ) + (2 {b}^{2} - 4 {a}^{2} {b}^{2} )) - ( - ( {a}^{2} + {b}^{2} ) + (5 {b}^{2} {a}^{2} - 3 {a}^{2} )) = - 2 {a}^{2} {b}^{2} - 5 {a}^{2} + 2 {b}^{2} - 4 {a}^{2} {b}^{2} - ( - {a}^{2} - {b}^{2} + 5 {b}^{2} {a}^{2} - 3{a}^{2}) = - 2 {a}^{2} {b}^{2} - 5 {a}^{2} + 2 {b}^{2} - 4 {a}^{2} {b}^{2} + {a}^{2} + {b}^{2} - 5 {a}^{2} {b}^{2} + 3 {a}^{2} = - 11 {a}^{2} {b}^{2} - {a}^{2} + 3 {b}^{2}57.+(−(2a
2
b
2
−5a
2
)+(2b
2
−4a
2
b
2
))−(−(a
2
+b
2
)+(5b
2
a
2
−3a
2
))=−2a
2
b
2
−5a
2
+2b
2
−4a
2
b
2
−(−a
2
−b
2
+5b
2
a
2
−3a
2
)=−2a
2
b
2
−5a
2
+2b
2
−4a
2
b
2
+a
2
+b
2
−5a
2
b
2
+3a
2
=−11a
2
b
2
−a
2
+3b
2
58. + ( - (4 {x}^{2} + 3 {x}^{2} {y}^{2} ) - (3 {y}^{2} - 5 {x}^{2} {y}^{2} )) - ( - ( {x}^{2} + 3 {y}^{2} ) + (2 {y}^{2} - 3 {x}^{2} {y}^{2} )) = - 4 {x}^{2} - 3 {x}^{2} {y}^{2} - 3 {y}^{2} + 5 {x}^{2} {y}^{2} - ( - {x}^{2} - 3 {y}^{2} + 2 {y}^{2} - 3 {x}^{2} {y}^{2} ) = - 4 {x}^{2} - 3 {x}^{2} {y}^{2} - 3 {y}^{2} + 5 {x}^{2} {y}^{2} + {x}^{2} + 3 {y}^{2} - 2 {y}^{2} + 3 {x}^{2} {y}^{2} = - 3 {x}^{2} + 5 {x}^{2} {y}^{2} - 2 {y}^{2}58.+(−(4x
2
+3x
2
y
2
)−(3y
2
−5x
2
y
2
))−(−(x
2
+3y
2
)+(2y
2
−3x
2
y
2
))=−4x
2
−3x
2
y
2
−3y
2
+5x
2
y
2
−(−x
2
−3y
2
+2y
2
−3x
2
y
2
)=−4x
2
−3x
2
y
2
−3y
2
+5x
2
y
2
+x
2
+3y
2
−2y
2
+3x
2
y
2
=−3x
2
+5x
2
y
2
−2y
2
59. + ( - {x}^{2} y + ( - ( {x}^{2} y - 2x {y}^{2} + {y}^{2} ) + ( - x {y}^{2} - 3 {y}^{2} + {x}^{2} y)) - (10 {y}^{2} - {x}^{2} y)) = - {x}^{2} y - {x}^{2} y + 2x {y}^{2} - {y}^{2} - x {y}^{2} - 3 {y}^{2} + {x}^{2} y - 10 {y}^{2} + {x}^{2} y = x {y}^{2} - 14 {y}^{2}59.+(−x
2
y+(−(x
2
y−2xy
2
+y
2
)+(−xy
2
−3y
2
+x
2
y))−(10y
2
−x
2
y))=−x
2
y−x
2
y+2xy
2
−y
2
−xy
2
−3y
2
+x
2
y−10y
2
+x
2
y=xy
2
−14y
2
60. + ( - {a}^{2} + ( - ( {a}^{2} + 3 {a}^{2} b - 5a{b}^{2} )+ (3a {b}^{2} + 5 {a}^{2} - {a}^{2} b)) - (7a {b}^{2} - 10 {a}^{2} )) = - {a}^{2} - {a}^{2} - 3 {a}^{2} b + 5a {b}^{2} + 3a {b}^{2} + 5 {a}^{2} - {a}^{2} b - 7a {b}^{2} + 10 {a}^{2} = 13 {a}^{2} - 4 {a}^{2} b + a {b}^{2}60.+(−a
2
+(−(a
2
+3a
2
b−5ab
2
)+(3ab
2
+5a
2
−a
2
b))−(7ab
2
−10a
2
))=−a
2
−a
2
−3a
2
b+5ab
2
+3ab
2
+5a
2
−a
2
b−7ab
2
+10a
2
=13a
2
−4a
2
b+ab
2
61. - ( - ( {a}^{2} + (3 {a}^{2} {b}^{2} - 5) - 4 {a}^{2} {b}^{2} ) - ( - 9 {a}^{2} {b}^{2} + 10) - {a}^{2} - (5 + {a}^{2} {b}^{2} )) = - ( - {a}^{2} - 3 {a}^{2} {b}^{2} + 5 + 4 {a}^{2} {b}^{2} + 9 {a}^{2} {b}^{2} - 10 - {a}^{2} - 5 - {a}^{2} {b}^{2} ) = {a}^{2} + 3 {a}^{2} {b}^{2} - 5 - 4 {a}^{2} {b}^{2} - 9 {a}^{2} {b}^{2} + 10 + {a}^{2} + 5 + {a}^{2} {b}^{2} = 2 {a}^{2} - 9 {a}^{2} {b}^{2} + 1061.−(−(a
2
+(3a
2
b
2
−5)−4a
2
b
2
)−(−9a
2
b
2
+10)−a
2
−(5+a
2
b
2
))=−(−a
2
−3a
2
b
2
+5+4a
2
b
2
+9a
2
b
2
−10−a
2
−5−a
2
b
2
)=a
2
+3a
2
b
2
−5−4a
2
b
2
−9a
2
b
2
+10+a
2
+5+a
2
b
2
=2a
2
−9a
2
b
2
+10
62. - ( - (xy + (4 {x}^{2} {y}^{2} - 9) - 4) - ( - 7xy + 5 {x}^{2} {y}^{2} ) - 11 - (7xy - 3 {x}^{2} {y}^{2} )) = - ( - xy - 4 {x}^{2} {y}^{2} + 9 + 4 + 7xy - 5 {x}^{2} {y}^{2} - 11 - 7xy + 3 {x}^{2} {y}^{2} ) = xy + 4 {x}^{2} {y}^{2} - 9 - 4 - 7xy + 5 {x}^{2} {y}^{2} + 11 + 7xy - 3 {x}^{2} {y}^{2} = xy + 6 {x}^{2} {y}^{2} - 262.−(−(xy+(4x
2
y
2
−9)−4)−(−7xy+5x
2
y
2
)−11−(7xy−3x
2
y
2
))=−(−xy−4x
2
y
2
+9+4+7xy−5x
2
y
2
−11−7xy+3x
2
y
2
)=xy+4x
2
y
2
−9−4−7xy+5x
2
y
2
+11+7xy−3x
2
y
2
=xy+6x
2
y
2
−2
63. - ( - (xy + y) - (2 + xy - y) + 5) - ((y - 11xy) - (2xy - y + 3)) - (14 + y) = - ( - xy - y - 2 - xy + y + 5) - (y - 11xy - 2xy + y - 3) - 14 - y = xy + y + 2 + xy - y - 5 - y + 11xy + 2xy - y + 3 - 14 - y = 15xy - 3y - 1463.−(−(xy+y)−(2+xy−y)+5)−((y−11xy)−(2xy−y+3))−(14+y)=−(−xy−y−2−xy+y+5)−(y−11xy−2xy+y−3)−14−y=xy+y+2+xy−y−5−y+11xy+2xy−y+3−14−y=15xy−3y−14
64. - ( - (yz + 11) - (4z + 3 - yz) + z) - ((5z - 4) + (9 - 3yz + z)) - (13 + z) = - ( - yz - 11 - 4z - 3 + yz + z) - (5z - 4 + 9 - 3yz + z) - 13 - z = yz + 11 + 4z + 3 - yz - z - 5z + 4 - 9 + 3yz - z - 13 - z = 3yz - 4z -464.−(−(yz+11)−(4z+3−yz)+z)−((5z−4)+(9−3yz+z))−(13+z)=−(−yz−11−4z−3+yz+z)−(5z−4+9−3yz+z)−13−z=yz+11+4z+3−yz−z−5z+4−9+3yz−z−13−z=3yz−4z−4