• Asignatura: Matemáticas
  • Autor: javierezekielromero1
  • hace 4 años

cuáles son los aspectos de los números y que funcion cumplen​

Respuestas

Respuesta dada por: geronimoramosfrancis
0

Respuesta:Para el concepto lingüístico, véase Número gramatical.

Para otros usos de este término, véase Número (desambiguación).

Un número, en ciencia, es una abstracción que representa una cantidad o una magnitud. En matemáticas un número puede representar una cantidad métrica o más generalmente un elemento de un sistema numérico o un número ordinal que representará una posición dentro de un orden de una serie determinada. Los números complejos se usan como una herramienta útil para resolver problemas algebraicos y que algebraicamente son un mero añadido a los números reales, que a su vez ampliaron el concepto de número ordinal. Sobre todo, un número real resuelve el problema de comparación de dos medidas, tanto si son conmensurables como inconmensurables. Ejemplo: el lado de un cuadrado es conmensurable con su perímetro, pero el lado del cuadrado con la diagonal del mismo son inconmensurables.1​

También, en sentido amplio, indica el carácter gráfico que sirve para representarlo; dicho símbolo gráfico de un número recibe propiamente la denominación de numeral o cifra. El que se escribe con un solo guarismo se llama dígito.2​

El concepto de número incluye abstracciones tales como números fraccionarios, negativos, irracionales, trascendentales, complejos, y también números de tipo más abstracto como los números hipercomplejos, que generalizan el concepto de número complejo, o los números hiperreales, los superreales y los surreales, que incluyen a los números reales como subconjunto.

Explicación paso a paso:Los números más conocidos son los números naturales. Denotados mediante {\displaystyle \mathbb {N} }\mathbb{N}, son conceptualmente los más simples y los que se usan para contar unidades discretas. Estos, conjuntamente con los números «negativos», conforman el conjunto de los enteros, denotados mediante {\displaystyle \mathbb {Z} }\mathbb{Z} (del alemán Zahlen, ‘números’). Los números naturales negativos permiten representar formalmente deudas, y permiten generalizar la resta de cualesquiera dos números naturales.

Otro tipo de números ampliamente usados son números fraccionarios, y representan tanto cantidades inferiores a una unidad, como números mixtos (un conjunto de unidades más una parte inferior a la unidad). Los números fraccionarios pueden ser expresados siempre como cocientes de enteros. El conjunto de todos los números fraccionarios es el conjunto de los números racionales (que usualmente se define para que incluya tanto a los racionales positivos, como a los racionales negativos y el cero). Este conjunto de números se designa como {\displaystyle \mathbb {Q} }\mathbb{Q}.

Los números racionales permiten resolver gran cantidad de problemas prácticos, pero desde los antiguos griegos se conoce que ciertas relaciones geométricas (la diagonal de un cuadrado de lado unidad) son números no enteros que tampoco son racionales. Igualmente, la solución numérica de una ecuación polinómica cuyos coeficientes son números racionales, usualmente es un número no racional. Puede demostrarse que cualquier número irracional puede representarse como una sucesión de Cauchy de números racionales que se aproximan a un límite numérico. El conjunto de todos los números racionales y los irracionales (obtenidos como límites de sucesiones de Cauchy de números racionales) es el conjunto de los números reales {\displaystyle \mathbb {R} }\mathbb{R}. Durante un tiempo se pensó que toda magnitud física existente podía ser expresada en términos de números reales exclusivamente. Entre los reales, existen números que no son soluciones de una ecuación polinomial o algebraica, que reciben el nombre de transcendentales. Ejemplos famosos de estos números son el número π (Pi) y el número e (este último base de los logaritmos naturales), los cuales

Fuera de los números reales y complejos, claramente conectados con problemas de las ciencias naturales, existen otros tipos de números que generalizan aún más y extienden el concepto de número de una manera más abstracta y responden más a creaciones deliberadas de matemáticos. La mayoría de estas generalizaciones del concepto de número se usan sólo en matemáticas, aunque algunos de ellos han encontrado aplicaciones para resolver ciertos problemas físicos. Entre ellos están los números hipercomplejos, que incluyen a los cuaterniones, útiles para representar rotaciones en un espacio de tres dimensiones, y generalizaciones de estos, como octoniones y los sedeniones.

Adjuntos:

javierezekielromero1: mucho texto pero gracias
Preguntas similares