1) Los costos fijos semanales por la producción de cierto artículo es de
$200 y el costo variable por unidad es de $0,70. La empresa puede vender x
unidades a $p por unidad en donde 2p = 5 – 0,001x.
(a) ¿Cuántas
unidades deben venderse para obtener el ingreso máximo? ¿Cuál es ingreso
máximo?.
(b) ¿Cuántas unidades deben
venderse y producirse para obtener el beneficio máximo? ¿Cuál es este
beneficio?
Respuestas
Respuesta dada por:
20
a). 2p = 5 - 0.001x
Ingresos Totales
IT (X) = x(5 - 0.001x) = -0.001x (al cuadrado)
Primera Derivada
IT¨ = -0.002x + 5
despejando x
x = -5 / -0.002
x = 2500
2500 es la cantidad que se debe de vender para obtener el ingreso Máximo.
b). Maximo beneficio = ingresos totales + ingresos marginales
Precio = 5 - 0.001(2500) = 5 - 2.5 = 2.5 / 2 = 1.25
IT = precio x cantidad = 1.25 x 2500 = 3125
IM = -0.002
Maximo beneficio = 3125 - 0.002 = 3124.998
Espero te sirva, no es mi área de estudio pero ahi estamos ayudando
Ingresos Totales
IT (X) = x(5 - 0.001x) = -0.001x (al cuadrado)
Primera Derivada
IT¨ = -0.002x + 5
despejando x
x = -5 / -0.002
x = 2500
2500 es la cantidad que se debe de vender para obtener el ingreso Máximo.
b). Maximo beneficio = ingresos totales + ingresos marginales
Precio = 5 - 0.001(2500) = 5 - 2.5 = 2.5 / 2 = 1.25
IT = precio x cantidad = 1.25 x 2500 = 3125
IM = -0.002
Maximo beneficio = 3125 - 0.002 = 3124.998
Espero te sirva, no es mi área de estudio pero ahi estamos ayudando
Respuesta dada por:
2
La utilidad máxima se obtiene cuando se venden 1800 unidades que es igual a $1420
La empresa puede vender x unidades a $p donde 2p = 5 – 0,001x., luego el valor de p es:
p = 2.5 - 0.0005x
Entonces los ingresos son:
(2.5 - 0.0005x)*x = 2.5x - 0.0005x²
Los costos son: 200 + 0.7x luego la utilidad es:
u(x) = 2.5x - 0.0005x² - 200 - 0.7x
= - 0.0005x² + 1.8x - 200
Como el coeficiente cuadrático es negativo entonces el máximo se encuentra en el único punto crítico que es la primera derivada igualada a cero:
- 0.001x + 1.8= 0
0.001x = 1.8
x = 1.8/0.001
x = 1800
Sustituyo en la utilidad:
- 0.0005*(1800)² + 1.8*(1800) - 200 = 1420
Puedes visitar: https://brainly.lat/tarea/9710163
Adjuntos:
Preguntas similares
hace 7 años
hace 7 años
hace 7 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años