Respuestas
Respuesta:
En cualquier progresión aritmética de diferencia d la suma del primer y último término es igual a la del segundo y el penúltimo, a la del tercero y el antepenúltimo, y así sucesivamente. Es decir, la suma de dos términos equidistantes de los extremos es constante, siempre que (n-k)≥ ( no se perdon)
Explicación paso a paso:
Respuesta:
En cualquier progresión aritmética de diferencia d la suma del primer y último término es igual a la del segundo y el penúltimo, a la del tercero y el antepenúltimo, y así sucesivamente. Es decir, la suma de dos términos equidistantes de los extremos es constante, siempre que (n-k)≥
Explicación paso a paso:
La sucesión: s = 2, 5, 8, 11, 14, 17, ··· Es un ejemplo claro de una sucesión aritmética, dado que la diferencia entre dos términos consecutivos nos da una constante d de valor 3.
La sucesión: s = -6, -2, 2, 6, 10, 14, ··· Es un ejemplo claro de una sucesión aritmética, dado que la diferencia entre dos términos consecutivos nos da una constante d de valor 4.
La sucesión: s = -1, 5, 11, 16, 22, 28, ··· No es un ejemplo de una sucesión aritmética, dado que la diferencia entre el tercer y cuarto término nos da una constante d = 5 diferente al valor de la otra constante con los otros téerminos que es d = 6.
Cuando hablamos de sucesiones aritméticas es importante definir la notación utilizada.