• Asignatura: Arte
  • Autor: masinboy
  • hace 9 años

Que es espacio General

Respuestas

Respuesta dada por: yesicavazquez0
1

Si el espacio vectorial es de dimensión infinita, la noción de valores propios puede generalizarse al concepto de espectro. El espectro es el conjunto de escalares λ para el que , no está definido, esto es, tal que  no tiene inversa acotada.

Si λ es un valor propio de T, λ está en el espectro de T. En general, el recíproco no es verdadero. Hay operadores en los espacios de Hilbert oBanach que no tienen vectores propios. Por ejemplo, tómese un desplazamiento bilateral en el espacio de Hilbert ; ningún vector propio potencial puede ser cuadrado-sumable, así que no existe ninguno. Sin embargo, cualquier operador lineal acotado en un espacio de Banach Vtiene espectro no vacío. El espectro  del operador T V → V se define como

 no es invertible

Entonces σ(T) es un conjunto compacto de números complejos, y es no vacío. Cuando T es un operador compacto (y en particular cuando T es un operador entre espacios finito-dimensionales como arriba), el espectro de T es igual que el conjunto de sus valores propios.

En espacios de dimensión infinita, el espectro de un operador acotado es siempre no vacío, lo que también se cumple para operadores adjuntos propios no acotados. A través de su medida espectral, el espectro de cualquier operador adjunto propio, acotado o no, puede descomponerse en sus partes absolutamente continua, discreta, y singular. El crecimiento exponencial proporciona un ejemplo de un espectro continuo, como en el caso anterior de la cuerda vibrante. El átomo de hidrógeno es un ejemplo en el que aparecen ambos tipos de espectro. El estado ligado del átomo de hidrógeno corresponde a la parte discreta del espectro, mientras que el proceso de ionización queda descrito por la parte continua.

Preguntas similares