calcula la moda y la mediana del siguiente conjunto :
3,7,4,2,3,4,6,8,6,5,4,9,5
A) moda=5
mediana=4
B)moda=4
mediana=6
C) moda=4
mediana=5
D)moda=3
mediana=4
Respuestas
Respuesta:
1Hallar la mediana de la siguientes series de números:
3, 5, 2, 6, 5, 9, 5, 2, 8.
En primer lugar ordenamos de menor a mayor
2, 2, 3, 5, 5, 5, 6, 8, 9.
Como la serie tiene un número impar de medidas la mediana es la puntuación central de la misma
{Me = 5}
3, 5, 2, 6, 5, 9, 5, 2, 8, 6.
Ordenamos de menor a mayor
2, 2, 3, 5, 5, 5, 6, 6, 8, 9.
Como la serie tiene un número par de puntuaciones la mediana es la media entre las dos puntuaciones centrales
{Me = \displaystyle\frac{5+5}{2}=5}
10, 13, 4, 7, 8, 11 10, 16, 18, 12, 3, 6, 9, 9, 4, 13, 20, 7, 5, 10, 17, 10, 16, 14, 8, 18
3, 4, 4, 5, 6, 7, 7, 8, 8, 9, 9, 10, 10, 10, 10, 11, 12, 13, 13, 14, 16, 16, 17, 18, 18, 20
{Me = \displaystyle\frac{10+10}{2}=10}
2Tabular y calcular mediana de la siguiente serie de números: 5, 3, 6, 5, 4, 5, 2, 8, 6, 5, 4, 8, 3, 4, 5, 4, 8, 2, 5, 4.
{x_{i}} {f_{i}} {F_{i}}
2 2 2
3 2 4
4 5 9
5 6 15
6 2 17
8 3 20
20
Para calcular la mediana dividimos {N=20} entre 2 y vemos que la casilla de las {F_{i}} donde se encuentra 10 corresponde a 5
{\displaystyle\frac{20}{2} = 10 \ \ \ \Longrightarrow \ \ \ Me = 5}
3Hallar la mediana de la distribución estadística que viene dada por la siguiente tabla:
{f_{i}}
[10, 15) 3
[15, 20) 5
[20, 25) 7
[25, 30) 4
[30, 35) 2
En primer lugar añadimos otra columna en la tabla con la frecuencia acumulada {(F_{i})}
Explicación paso a paso:
espero que te haiga ayudado