Calcular la altura que podemos slcanzar con una escalera de 3 cm apoyaba sobre una pared , si la parte inferior la situamos a 1.2 m de esta ????
Con explícame
Respuestas
Respuesta:
1) Una ciudad se encuentra 17 km al oeste y 8 km al norte de otra. ¿Cuál es la distancia real lineal entre las dos ciudades?
Lo primero es realizar un pequeño dibujo que nos permita identificar la situación y ver cómo definimos un triángulo rectángulo en la misma.
Este podría ser un buen dibujo, donde observamos que se cumplen los datos que nos da el problema y que además la distancia real entre las ciudades, vendría a ser la hipotenusa de nuestro triángulo rectángulo.
El triángulo entonces queda claramente definido y sabemos que tenemos un cateto que mide 17 km, otro que mide 8 km y que la distancia real que se nos está pidiendo es la hipotenusa del tal triángulo. Aplicamos Teorema de Pitágoras y el planteo sería así:
a2 = b2 + c2
a2 = 82 + 172 = 64 + 289 = 353
a = √353 = 18.8
Respuesta final: la distancia real entre las dos ciudades es de 18,8 km
2) Una escalera cuya longitud es de 3 metros se encuentra apoyada contra una pared en el suelo horizontal y alcanza 2,8 m sobre esa pared vertical. La pregunta es: ¿a qué distancia está al pie de la escalera de la base de la pared?
En este caso, el dibujo que podemos hacer para interpretar la letra del problema sería algo como esto, donde nuevamente se identifica sin problemas el triángulo rectángulo.
Queda claro que la escalera cumple el rol de la hipotenusa, la altura de la pared (dato conocido) es uno de los catetos y la distancia del pie de la escalera hasta la base de la pared, es el otro cateto, precisamente la medida que se nos pide calcular y que como es una incógnita para nosotros hemos llamado “x”.
El planteo de resolución en este caso podría ser el siguiente:
a2 = b2 + c2
32 = b2 + 2.82
9 = b2 + 7.84
b2 = 9 – 7.84 = 1.16
b = √1.16 = 1.08
Respuesta final: el pie de la escalera está a 1,08 mt de la pared.
3) Una cáncha de fútbol (rectangular como sabemos) mide 125 metros de largo. Si la longitud de sus diagonales es de 150 metros. ¿cuál es el ancho del campo de juego?
Primer paso: dibujar la figura nos ayuda a comprender el problema.
Analizando la figura, vemos que el triángulo queda comprendido por esa diagonal del campo de juego (la hipotenusa), el largo del campo (uno de los catetos) y el ancho (el otro cateto cuya longitud es lo que se nos pide hallar). El planteo de resolución sería el siguiente:
a2 = b2 + c2
1502 = 1252 + c2
22,500 = 15,625 + c2
c2 = 22,500 – 15,625 = 6,875
c = √6,875
c = 82.9
Respuesta final: el ancho del campo de fútbol es de 82,9 metros
4) y 5)
6) Una escalera de 10 m de longitud está apoyada sobre la pared. El pie de la escalera dista 6 m de la pared. ¿Qué altura alcanza la escalera sobre la pared?
7) Para el siguiente triángulo isósceles, calcula el perímetro, la altura y el área.
8) Para el siguiente rombo, halla x, el perímetro y el área.