Respuestas
Respuesta:
Result:
x^2 - 28 x - 10
diferentes metodos:
Alternate forms:
(x - 28) x - 10
(x - 14)^2 - 206
-(-x + sqrt(206) + 14) (x + sqrt(206) - 14)
Roots:
x = 14 - sqrt(206)
x = 14 + sqrt(206)
Polynomial discriminant:
Δ = 824
Properties as a real function:
Domain
R (all real numbers)
Range
{y element R : y>=-206}
Derivative:
d/dx(x^2 - 8 x - 20 x - 10) = 2 (x - 14)
Indefinite integral:
integral(-10 - 28 x + x^2) dx = x^3/3 - 14 x^2 - 10 x + constant
Global minimum:
min{x^2 - 8 x - 20 x - 10} = -206 at x = 14
Definite integral:
integral_(14 - sqrt(206))^(14 + sqrt(206)) (-10 - 28 x + x^2) dx = -(824 sqrt(206))/3≈-3942.21
Definite integral area below the axis between the smallest and largest real roots:
integral_(14 - sqrt(206))^(14 + sqrt(206)) (-10 - 28 x + x^2) θ(10 + 28 x - x^2) dx = -(824 sqrt(206))/3≈-3942.21
espero te sirvan :)