Respuestas
Respuesta:
Exact result:
4 sqrt(3) sqrt(x^2)
diferentes metodos:
Alternate form assuming x is real:
4 sqrt(3) abs(x)
Alternate form assuming x>0:
4 sqrt(3) x
Root:
x = 0
Properties as a real function:
Domain
R (all real numbers)
Range
{y element R : y>=0} (all non-negative real numbers)
Parity
even
Series expansion at x = 0:
(4 sqrt(3) sqrt(x^2) x)/x + O(x^9)
(Puiseux series)
Series expansion at x = ∞:
4 sqrt(3) x + O((1/x)^9)
(Taylor series)
Derivative:
d/dx(sqrt(48 x^2)) = (4 sqrt(3) x)/sqrt(x^2)
Indefinite integral:
integral4 sqrt(3) sqrt(x^2) dx = 2 sqrt(3) x sqrt(x^2) + constant
Global minimum:
min{sqrt(48 x^2)} = 0 at x = 0
Series representations:
sqrt(48 x^2) = sqrt(-1 + 48 x^2) sum_(k=0)^∞ (-1 + 48 x^2)^(-k) binomial(1/2, k) for abs(1 - 48 x^2)>1
sqrt(48 x^2) = sum_(k=0)^∞ ((-1)^k (-1 + 48 x^2)^k (-1/2)_k)/(k!) for abs(1 - 48 x^2)<1
sqrt(48 x^2) = sqrt(-1 + 48 x^2) sum_(k=0)^∞ ((-1)^k (-1 + 48 x^2)^(-k) (-1/2)_k)/(k!) for abs(1 - 48 x^2)>1
espero te sirva