de 5 ejemplos de funciones o relaciones entre dos conjuntos
el q me ayude con esto le doy corona laik y puntuación uwu
(no respondas si no sabes te hace ver 幼儿园 ;> )
Respuestas
Entender los conceptos de Relación y de Función es de suma importancia en Matemática.
Para lograr esa comprensión es necesario adentrarnos en la noción de Correspondencia , ya que esta tiene un papel fundamental en las relaciones y funciones.
Lo primero es entender que Correspondencia es equivalente a Relación . En nuestra lengua, decir “en relación a”, es equivalente a decir “corresponde a”.
Ejemplos:
En una tienda comercial, cada artículo está relacionado con su precio; o sea, a cada artículo le corresponde un precio.
En la guía telefónica, cada cliente está relacionado con un número; o sea, a cada nombre de la guía le corresponde un número.
Definición matemática de Relación y de Función
En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio , con un segundo conjunto, llamado Recorrido o Rango , de manera que a cada elemento del Dominio le corresponde uno o más elementos del Recorrido o Rango.
Por su parte, una Función es una relación a la cual se añade la condición de que a cada valor del Dominio le corresponde uno y sólo un valor del Recorrido.
De las definiciones anteriores podemos deducir que todas las funciones son relaciones , pero no todas las relaciones son funciones.
También debemos agregar que toda ecuación es una Relación , pero no toda ecuación es una Función.
Todas las Relaciones pueden ser graficadas en el Plano Cartesiano.
Ver: Plano Cartesiano
Dados dos conjuntos A y B una relación definida de A en B es un conjunto de parejas ordenadas ( par ordenado ) que hacen verdadera una proposición; dicho de otro modo, una relación es cualquier subconjunto del producto cartesiano A x B
Ejemplo 1.
Si A = {2, 3} y B = {1, 4, 5}, encontrar tres relaciones definidas de A en B.
Solución
El producto cartesiano de A x B está conformado por las siguientes parejas o pares ordenados:
A x B = {(2, 1), (2, 4), (2, 5), (3, 1), (3, 4), (3, 5)}
Y cada uno de los siguientes conjuntos corresponde a relaciones definidas de A en B:
R1 = {(2, 1), (3, 1)}
R2 = {(2, 4), (2, 5), (3, 4), (3, 5)}
R3 = {(2, 4), (3, 5)}
La relación R1 se puede definir como el conjunto de pares cuyo segundo elemento es 1, esto es, R1 = {( x , y ) / y = 1}.
La relación R2 está formada por los pares cuyo primer componente es menor que el segundo componente, R2 = {( x , y ) / x < y }
Y la relación R3 está conformada por todos los pares que cumplen con que el segundo componente es dos unidades mayor que el primer componente, dicho de otro modo, R3 = {( x , y ) / y = x + 2}
Así, se puede continuar enumerando relaciones definidas a partir de A x B. Como se puede ver, la regla que define la relación se puede escribir mediante ecuaciones o desigualdades que relacionan los valores de x e y . Estas reglas son un medio conveniente para ordenar en pares los elementos de los dos conjuntos.