• Asignatura: Física
  • Autor: gabxxivv
  • hace 4 años

Posición de una partícula en m en el tiempo 4.5

Respuestas

Respuesta dada por: dionplanner
0

Respuesta:

Si la partícula que describe una función desplazamiento S(t) se mueve en linea recta , para los intervalos de tiempo: [3,4] [3.5,4] [4,4.5]  tendrá una velocidad promedio de V =2m/s, y para estos intervalos su velocidad promedio se mantiene constante , la derivada de la función que describe su movimiento es S'(t) = 2t - 8.

La partícula durante su trayectoria cuando t=4s tendra una velocidad de nula V = 0m/s , La derivada de la función posición es la función velocidad

Explicación:

Para la función  S(t) = ⁡t²-8t+25, calculamos las velocidades promedio en funcion del tiempo, derivando la funcion S(t)

V(t) =S'(t) = 2t - 8

La formula para calcular la velocidad promedio

Vm = f(b) - f(a) /b -a

Donde a y b son los limites a evaluar

[3,4] = [a,b]

Vm = (2*4-8)-(2*3-8)/4-3

Vm = 2m/s

[3.5,4] = [a,b]

Vm = (2*4-8)-(2*3.5-8)/4-3.5

Vm = 2m/s

[4,4.5] = [a,b]

Vm = (2*4.5-8)-(2*4-8)/4.5-4

Vm = 2m/s

La velocidad promedio se mantiene constante en los intervalos de tiempo calculados V = 2m/s

La derivada f'(t) es

V(t) =S'(t) = 2t - 8

La velocidad cuando t=4s

V(t) = 2t - 8  [m/s]

V = 2(4) - 8

V = 0m/s

La derivada de la función posición es la función velocidad, Para poder calcular la velocidad un tiempo t, debemos lograr que el intervalo de tiempo sea los mas pequeño, es decir que limite tienda a 0, y esta argumento matematico se conoce como derivada

Preguntas similares