Una escalera de 50 dm de longitud está apoyada sobre una pared. Su pie dista 3 m de la pared, como se observa en a figura. ¿A qué altura se apoya la parte superior de la escalera sobre la pare
Respuestas
Respuesta:Este podría ser un buen dibujo, donde observamos que se cumplen los datos que nos da el problema y que además la distancia real entre las ciudades, vendría a ser la hipotenusa de nuestro triángulo rectángulo.
El triángulo entonces queda claramente definido y sabemos que tenemos un cateto que mide 17 km, otro que mide 8 km y que la distancia real que se nos está pidiendo es la hipotenusa del tal triángulo. Aplicamos Teorema de Pitágoras y el planteo sería así:
a2 = b2 + c2
a2 = 82 + 172 = 64 + 289 = 353
a = √353 = 18.8
Respuesta final: la distancia real entre las dos ciudades es de 18,8 km
2) Una escalera cuya longitud es de 3 metros se encuentra apoyada contra una pared en el suelo horizontal y alcanza 2,8 m sobre esa pared vertical. La pregunta es: ¿a qué distancia está al pie de la escalera de la base de la pared?
En este caso, el dibujo que podemos hacer para interpretar la letra del problema sería algo como esto, donde nuevamente se identifica sin problemas el triángulo rectángulo.
Queda claro que la escalera cumple el rol de la hipotenusa, la altura de la pared (dato conocido) es uno de los catetos y la distancia del pie de la escalera hasta la base de la pared, es el otro cateto, precisamente la medida que se nos pide calcular y que como es una incógnita para nosotros hemos llamado “x”.
El planteo de resolución en este caso podría ser el siguiente:
a2 = b2 + c2
32 = b2 + 2.82
9 = b2 + 7.84
b2 = 9 – 7.84 = 1.16
b = √1.16 = 1.08
Explicación paso a paso:
Respuesta:
altura=4metros
Explicación paso a paso:
De acuerdo al texto:
La situación forma un triángulo rectángulo
La hipotenusa es la escalera: c=50dm
un cateto es la distancia del pie a la pared: b=3m
el otro cateto es la altura de la pared que apoya la escalera: a
De acuerdo al Teorema de Pitágoras
despejamos "a"
convertimos los dm a metros:
Espero te ayude