• Asignatura: Matemáticas
  • Autor: victoria1302garcia
  • hace 4 años

resolver lo siguiente 5(x-1) +3x<2x-1​

Respuestas

Respuesta dada por: stheisy678
1

Respuesta:

Descripción y ejemplos.

Se llaman ecuaciones a igualdades en las que aparecen número y letras (incógnitas) relacionados mediante operaciones matemáticas.

Por ejemplo: 3x - 2y = x2 + 1

Son ecuaciones con una incógnita cuando aparece una sóla letra (incógnita, normalmente la x).

Por ejemplo: x2 + 1 = x + 4

Se dice que son de primer grado cuando dicha letra no está elevada a ninguna potencia (por tanto a 1).

Ejemplos :

3x + 1 = x - 2

1 - 3x = 2x - 9.

x - 3 = 2 + x.

x/2 = 1 - x + 3x/2

Son estas últimas las ecuaciones que vamos a resolver en esta lección.

Solución numérica y gráfica.

Ejercicio 1.- Supongamos que queremos resolver la ecuación: 3x + 1 = x - 2.

Resolver una ecuación es encontrar un valor de x que, al ser sustituido en la ecuación y realizar las operaciones indicadas, se llegue a que la igualdad es cierta.

En el ejemplo podemos probar con valores:

x = 1, llegaríamos a 5 = -2, luego no es cierto,

x = -1 llegaríamos a -2 = -3, tampoco. Resolvámosla entonces para hallar el valor de x buscado:

Numéricamente, como seguramente sabrás, se resuelve "despejando" la x, o sea ir pasando términos de un miembro a otro hasta conseguir: x = ..número..Así:

3x - x = -1 - 2 ; 2x = - 3 ; x = -3/2 ó x = -1,5.

Efectivamente: 3(-1,5) + 1 = -1,5 -2 ; -4,5 + 1 = -3,5. ¡cierto!.

Decimos en este caso que la ecaución tiene solución. Pero:

¿qué significa gráficamente esta solución?

Observa la siguiente escena. La línea recta dibujada en rojo representa gráficamente a la ecuación.

El valor de x donde la recta corta al eje X será la solución de la ecuación (observa que es x = -1,5)

Cambia los valores de x en la escena adjunta, "arrastrando" el punto grueso rojo con el ratón.

Observa en esta escena que la ecuación está escrita en la parte inferior de la imagen, en rojo.

Para resolver una ecuación de primer grado se utilizan dos reglas fundamentales para conseguir dejar la "x" sola en el primer miembro. Veámoslas para el ejercicio anterior:

3x + 1 = x - 2.

- Sumar o restar a los dos miembros un mismo número. En este caso restar 1 a los dos miembros y restar x a los dos miembros:

3x +1 -1 - x = x - x - 2 -1 , que una vez operado queda: 2x = -3. Produce el mismo efecto lo que llamamos "pasar de un miembro a otro sumando lo que resta o restando lo que suma"

- Multiplicar o dividir los dos miembros por un mismo número. En este caso por 2:

2x/2 = -3/2, que una vez simplificado queda x = -3/2 como ya habíamos obtenido antes. Produce el mismo efecto lo que llamamos "pasar de un miembro a otro lo que está multiplicando dividiendo o lo que está dividiendo multiplicando".

Ejercicio 2.

Resuelve numéricamente en tu cuaderno de trabajo la ecuación: 1 - 3x = 2x - 9.

Combrueba el punto donde la recta corta al eje X. El valor de x debe coincidir con el obtenido numéricamente.

Plantea y resuelve numéricamente, y gráficamente en esta escena, cambiando la ecuación, el siguiente problema:

Ejercicio 8.- En una caja hay el doble de caramelos de menta que de fresa y el triple de caramelos de naranja que de menta y fresa juntos. Si en total hay 144 caramelos, ¿cuántos hay de cada sabor ?. (Sol: 12, 24, 108).

Ejercicios finales.

Resuelve numéricamente en el cuaderno de trabajo y gráficamente en la escena que se te presenta a continuación los ejercicios y problemas siguientes:

Ejercicio 9.- Resolver las siguientes ecuaciones:

a) -5x = 12 - x

b) 2(x-7)-3(x+2)+4(x+1)-2 = 0 (¡Ojo con los signos delante de los paréntesis !)

c) 3x - 5 = x/2 (Observa que para eliminar el 2 basta multiplicar toda la ecuación por 2)

d) 3x + 4 - x = 7 + 2x

e) 2x - 1 = 3(x + 2) - x

Preguntas similares