Respuestas
Respuesta dada por:
0
Respuesta:
Problem. Let f : R → R be a differentiable function such that |f
0
(x)| ≤ π/6 for all
x ∈ R. If f(0) = ln(5) what are the possible values of f(e)?
Solution. It must be that f(e) ∈ [−πe
6 + ln(5),
πe
6 + ln(5)]. If f(e) does not belong to
this interval, then
f(e) − f(0)
e − 0
> π/6
which means that there is x ∈ [0, e] such that |f
0
(x)| > π/6 by the Mean Value Theorem.
Conversely, by picking m ∈ [−π/6, π/6] the function f(x) = ln(5) + mx can be made to
achieve at f(e) any value in [−πe
6 + ln(5),
πe
6 + ln(5)
Explicación paso a paso:
Preguntas similares
hace 3 años
hace 3 años
hace 6 años
hace 8 años