prove algebraically that the difference between the squares of any two consecutive odd numbers is always a multiple of 8
Respuestas
Respuesta dada por:
0
Answer: See explanation
Step by step
explanation:
Suppose that N is any integer.
Let the numbers (2N +1) and (2N +3) be consecutive odd numbers.
So the difference of their squares is:
(2N + 3) ² - (2N + 1) ² = (2N) ² + 12N + 9 - [(2N) ² + 4N + 1]
= 4N² + 12N + 9 - [4N² + 4N + 1]
= 4N² + 12N + 9 - 4N² - 4N - 1
= 12N - 4N + 9 - 1
= 8N + 8
= 8 (N + 1)
And this result is a multiple of 8.
Preguntas similares
hace 3 años
hace 3 años
hace 6 años
hace 8 años
hace 8 años