• Asignatura: Matemáticas
  • Autor: DanielLozada14
  • hace 5 años

Define y Escribe las leyes de números irracionales. Dos ejemplos de cada uno (2 suma, 2 resta, 2 multiplicación y 2 División).
(Ya es la 3ra vez que pongo la actividad, si no responden bien los funo)

Respuestas

Respuesta dada por: mamasusanita
3

Respuesta: Número irracional lo definimos como número decimal infinito no periódico.

Los números irracionales tienen como definición que son números que poseen infinitas cifras decimales no periódicas, que por lo tanto no pueden ser expresados como fracciones.

Estos números pueden haber sido descubiertos al tratar de resolver la longitud de un cuadrado según el Teorema de Pitágoras, siendo el resultado el número 2 o

,raíz cuadrada de dos, el ejemplo de números irracionales más claro e inmediato, cuya respuesta a su vez posee infinitas cifras decimales que al no poder ser fraccionado, fue llamado irracional, en el sentido de no poder escribirlo como una ración o varias raciones o fracciones.

Para distinguir los números irracionales de los racionales, debemos tomar en cuenta que los números racionales si se pueden escribir de manera fraccionada o racional, por ejemplo: 18/5 que es igual a 3,6 por lo tanto es un número racional a diferencia de la raíz cuadrada de dos en cuyo resultado se obtienen infinito número de cifras decimales, y su fraccionamiento resulta imposible.

Podrías intentar encontrar la respuesta en una calculadora, y según el número de decimales con la cual la tengas programada, obtendrás algunos resultados: 1.4142135 esta es la respuesta de √2 con siete decimales, pero la cifra se irá alargando pues tiene infinitos decimales. De esta manera podemos definir a los números irracionales como un decimal infinito no periódico, es decir que cualquier representación de un número irracional, solo es una aproximación en números racionales.

Propiedades

Además de ser un número infinito decimal no periódico, los números irracionales tienen otras propiedades como:

Propiedad conmutativa: en la suma y la multiplicación se cumple la propiedad conmutativa según la cual el orden de los factores no altera el resultado, por ejemplo, π+ϕ = ϕ+π; así como en la multiplicación, π×ϕ=ϕ×π.

Propiedad asociativa: donde la distribución y agrupación de los números da como resultado el mismo número, de manera independiente a su agrupación, siendo (ϕ+π)+e=ϕ+ (π+e); y de la misma manera con la multiplicación, (ϕ×π) ×e=ϕ× (π×e).

Elemento opuesto: existe un inverso aditivo, para la suma de números irracionales, es decir que para cada número tiene su negativo que lo anula, por ejemplo π-π=0 y de la misma forma un inverso multiplicativo que da como resultado 1, es decir ϕ×1/ϕ=1.

La multiplicación es distributiva en relación a la suma y a la resta. Ejemplo: (3+2) π =3π+2π=5π.

Clasificación

Dentro de la recta real numérica existen varios conjuntos de números, pero dentro de los números irracionales hay más tipos para clasificar, estos son:

Número algebraico.- se les llama así a los números irracionales que surgen de resolver alguna ecuación algebraica y se escribe con un número finito de radicales libres o anidados. En general, las raíces no exactas de cualquier orden se encuentran dentro de este conjunto, es decir las raíces cuadradas, cúbicas, etc.

Número trascendente.- este es un número irracional que no puede ser representado a través de un número finito de radicales libres o anidados, estos provienen de otro tipo de operaciones llamadas funciones trascendentes utilizadas mucho en trigonometría, logaritmos, exponenciales, etcétera. Aunque también pueden surgir de la simple acción de escribir números decimales al azar sin periodicidad y sin un patrón determinado, podemos decir que son decimales infinitos.

Este último tipo, se diferencia del anterior porque no puede ser el resultado de una ecuación algebraica, en otras palabras, son relevantes a la clasificación porque no tienen una representación con un número radical.

Número irracional famoso Pi

Pi, o como se lo conoce mejor con su símbolo π, este es el más conocido de los números irracionales, y se utiliza en su mayoría para matemáticas, física e ingeniería. Su valor es el cociente entre la longitud o perímetro de la circunferencia y la longitud de su diámetro. De él se han calculado millones de cifras decimales y aún sigue sin ofrecer un patrón. La aproximación de su número es 3.141592653589…

30 ejemplos de números irracionales

1. √31 = 5.5677643628300219221194712989185…

2. √999 = 31.606961258558216545204213985699…

3. 3√2 = 1. 4142135623730950488016887242096980785696…

4. √3 = 1.7320508075688772935274463415059…

5. π = 3,14159265358979323846…

6. φ = 1.618033988749894848204586834…

7. El número e (el número de Euler) 2,7182818284590452353602874713527…

8. √5 = 2.2360679774997896964091736687313…

9. √7 = 2.6457513110645905905016157536393…

10. √11 = 3.3166247903553998491149327366707…

Explicación paso a paso:


DanielLozada14: Muy bien. Pero sincertamente no veo los ejercicios muy claros.
Respuesta dada por: franciscojavie723
2

Respuesta:

maria velen

Explicación paso a paso:

fuiste enviada para hacer el bien

Preguntas similares