• Asignatura: Física
  • Autor: Danclap0708
  • hace 4 años

¿Cuales son las unidades de medida en la que se expresa el movimiento circular uniforme?​

Respuestas

Respuesta dada por: valentinaabril82
2

Respuesta: espero que te sirva de mucha ayuda.

Explicación:

El movimiento circular uniforme (M.C.U.) es el que describe un cuerpo que se mueve alrededor de un eje de giro con un radio y una velocidad angular (w) constantes, trazando una circunferencia y con una aceleración centrípeta. En este movimiento la dirección varia en cada instante, un ejemplo de este movimiento es una rueda de automóvil que gira a una (w) constante.

Movimiento circular en mecánica relativista

Si bien la teoría especial de la relatividad permite que una partícula no cargada esté en movimiento circular uniforme, esto en general no resulta posible para una partícula cargada a la que no se le suministra energía adicional. Esto se debe a que una partícula cargada acelerada emite radicación electromagnética perdiendo energía en ese proceso. Eso es precisamente lo que sucede en un sincrotrón que es un tipo de acelerador de partículas (de hecho la radicación de sincrotón emitida por partículas aceleradas en un anillo puede usarse con fines médicos).

Además, en la mecánica relativista el cociente entre la fuerza centrípeta y la aceleración centrípeta, es diferente del cociente entre la fuerza tangencial y la aceleración tangencial. Esto introduce una diferencia fundamental con el caso newtoniano: la aceleración y la fuerza relativistas no son vectores necesariamente paralelos:

{\displaystyle \mathbf {F} ={\frac {\mathrm {d} }{\mathrm {d} t}}\left({\frac {m\mathbf {v} }{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}\right)={\frac {m\mathbf {v} }{\left[1-{\frac {v^{2}}{c^{2}}}\right]^{3/2}}}\left({\frac {\mathbf {v} }{c^{2}}}\cdot \mathbf {a} \right)+{\frac {m\mathbf {a} }{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}}

De la relación anterior, se deduce que la fuerza y la aceleración solo son paralelas en dos casos:

{\displaystyle \mathbf {a} \cdot \mathbf {v} =0,\qquad \mathbf {a} \cdot \mathbf {v} =\|\mathbf {a} \|\|\mathbf {v} \|}{\displaystyle \mathbf {a} \cdot \mathbf {v} =0,\qquad \mathbf {a} \cdot \mathbf {v} =\|\mathbf {a} \|\|\mathbf {v} \|}

El primer caso se da cuando la aceleración y la velocidad son perpendiculares, cosa que sucede en el movimiento circular uniforme (o helicoidal uniforme). El segundo caso se da en un movimiento rectilíneo. En cualquier otro tipo de movimiento en general la fuerza y la aceleración no serán permanentemente paralelas.

Movimiento circular en mecánica cuántica

Artículo principal: Partícula en un anillo

En mecánica cuántica si bien no puede hablarse de trayectoria con precisión pueden ser analizados los estados cuánticos estacionarios de unas partículas que deben moverse a lo largo de un anillo. Los estados estacionarios de una partícula en un anillo son el análogo cuántico del movimiento circular uniforme. Para una partícula moviéndose sobre un anillo con momento angular bien definido la función de onda viene dada por:

{\displaystyle \Psi (\varphi )={\frac {1}{\sqrt {2\pi }}}e^{i{\frac {L_{z}}{\hbar }}\varphi }}{\displaystyle \Psi (\varphi )={\frac {1}{\sqrt {2\pi }}}e^{i{\frac {L_{z}}{\hbar }}\varphi }}

Puede observarse que la densidad de probabilidad es uniforme, al igual que sucede en el caso clásico.

Un hecho interesante es que las predicciones para una partícula cargada, en movimiento circular uniforme, es que esta no tiene porqué emitir fotones, de la misma manera que el electrón orbitante alrededor del núcleo atómico no emite energía, por ser el valor resultante de la aceleración vectorial nula, al ser la distribución simétrica respecto al núcleo atómico.


Danclap0708: gracias
valentinaabril82: oky
Anónimo: hola que tal
Preguntas similares