Respuestas
Respuesta dada por:
7
El polinomio P(x) es divisible por un polinomio de la forma (x - a) si y sólo si P(x = a) = 0.
Al valor x = a se le llama raíz ocero de P(x).
Las raíces o ceros de un polinomio son los valores queanulan el polinomio.
Ejercicio
Comprueba que los siguientes polinomios tienen como factores los que se indican:
1(x3 − 5x − 1) tiene por factor (x − 3)
(x3 − 5x −1) es divisible por (x − 3) si y sólo si P(x = 3) = 0.
P(3) = 33 − 5 · 3 − 1 = 27 − 15 − 1 ≠ 0
(x − 3) no es un factor.
2(x6 − 1) tiene por factor (x + 1)
(x6 − 1) es divisible por (x + 1) si y sólo si P(x = − 1) = 0.
P(−1) = (−1)6 − 1 = 0
(x + 1) es un factor.
3(x4 − 2x3 + x2 + x − 1) tiene por factor (x − 1)
(x4 − 2x3 + x2 + x − 1) es divisible por (x − 1 ) si y sólo si P(x = 1) = 0.
P(1) = 14 − 2 · 13 + 1 2 + 1 − 1 = 1 − 2 + 1 + 1 − 1 = 0
(x − 1) es un factor.
4(x10 − 1024) tiene por factor (x + 2)
(x10 − 1024) es divisible por (x + 2) si y sólo si P(x = − 2) = 0.
P(−2) = (−2)10 − 1024 = 1024 − 1024 = 0
(x + 2) es un factor.
Al valor x = a se le llama raíz ocero de P(x).
Las raíces o ceros de un polinomio son los valores queanulan el polinomio.
Ejercicio
Comprueba que los siguientes polinomios tienen como factores los que se indican:
1(x3 − 5x − 1) tiene por factor (x − 3)
(x3 − 5x −1) es divisible por (x − 3) si y sólo si P(x = 3) = 0.
P(3) = 33 − 5 · 3 − 1 = 27 − 15 − 1 ≠ 0
(x − 3) no es un factor.
2(x6 − 1) tiene por factor (x + 1)
(x6 − 1) es divisible por (x + 1) si y sólo si P(x = − 1) = 0.
P(−1) = (−1)6 − 1 = 0
(x + 1) es un factor.
3(x4 − 2x3 + x2 + x − 1) tiene por factor (x − 1)
(x4 − 2x3 + x2 + x − 1) es divisible por (x − 1 ) si y sólo si P(x = 1) = 0.
P(1) = 14 − 2 · 13 + 1 2 + 1 − 1 = 1 − 2 + 1 + 1 − 1 = 0
(x − 1) es un factor.
4(x10 − 1024) tiene por factor (x + 2)
(x10 − 1024) es divisible por (x + 2) si y sólo si P(x = − 2) = 0.
P(−2) = (−2)10 − 1024 = 1024 − 1024 = 0
(x + 2) es un factor.
Preguntas similares
hace 6 años
hace 6 años
hace 6 años
hace 9 años
hace 9 años