Respuestas
Respuesta:
nose
Explicación paso a paso:
Respuesta:
El modelo de la gráfica de la función cotangente del ángulo se puede obtener transfiriendo puntos del círculo unitario al sistema rectangular de coordenadas. Recuerde que la función cotangente del ángulo es el cociente de la x y la y de los arcos del círculo unitario.
Explicación paso a paso:
Un poco de historia La exposición de la sección 8.4 desemboca directamente
en una forma más analítica de estudiar la trigonometría, donde coseno y seno
se definen como las coordenadas x y y, respectivamente, de un punto (x, y) en
un círculo unitario. Esta interpretación de seno y coseno nos permite definir
las funciones trigonométricas como un número real, en lugar de un ángulo.
Esta segunda aproximación a la trigonometría se utiliza en cálculo y en aplicaciones avanzadas de trigonometría. Además, una función trigonométrica de
un número real se puede representar gráficamente como cualquier función
ordinaria y 5 f(x), donde la variable x representa un número real en el dominio de f.
Desde el