Acoda en su forma original las siguientes ecuaciones cuadráticas 2=3x-6x²
6x²+2x=1
4x+x²+3=0
8x²+4=2x
Respuestas
Respuesta:
Explicación paso a paso:
1
Indica cuales de las siguientes expresiones son monomios. En caso afirmativo, indica su grado y coeficiente.
13x³ 25x−3 33x + 1 4 5 6 7
Solución
Indica cuales de las siguientes expresiones son monomios. En caso afirmativo, indica su grado y coeficiente.
13x³
Grado: 3, coeficiente: 3
25x−3
No es un monomio, porque el exponente no es un número natural.
33x + 1
No es un monomio, porque aparece una suma.
4
Grado: 1, coeficiente:
5
Grado: 4, coefeciente:
6
No es un monomio, no tiene exponente natural.
7
No, porque la parte literal está dentro de una raíz.
2
Efectúa las siguientes operaciones con monomios:
12x³ − 5x³ = 23x4 − 2x4 + 7x4 = 3(2x³) · (5x³) = 4(2x³y²) · (5x³yz²) = 5(12x³) : (4x) = 6(18x6y²z5) : (6x³yz²) = 7(2x³y²)³ = 8(2x³y²z5)5 = 93x³ − 5x³ − 2x³ = 10(12x³y5 z4) : (3x²y²z³) = 11
Solución
Indica cuales de las siguientes expresiones son monomios. En caso afirmativo, indica su grado y coeficiente.
1 2x³ − 5x³ = −3x³
2 3x4 − 2x4 + 7x4 = 8x4
3(2x³) · (5x³) = 10x6
4(2x³y²) · (5x³yz²) = 10x6 y³z²
5 (12x³) : (4x) = 3x²
6 (18x6 y² z5) : (6x³ y z² ) = 3x³y z³
7(2x³y²)³ = 8 x9 y6
8(2x³y²z5)5 = 32 x15 y10 z25
9 3x³ − 5x³ − 2x³ = −4x³
10 (12 x³y5z4) : (3x²y²z³) = 4xy³ z
11
3
Di si las siguientes expresiones algebraicas son polinomios o no. En caso afirmativo, señala cuál es su grado y término independiente.
1x4 − 3x5 + 2x² + 5 2 + 7X² + 2 31 − x4 4 5x³ + x5 + x² 6x − 2x−3 + 8 7
Solución
Di si las siguientes expresiones algebraicas son polinomios o no. En caso afirmativo, señala cuál es su grado y término independiente.
1x4 − 3x5 + 2x² + 5
Grado: 5, término independiente: 5.
2 + 7X² + 2
No es un polinomio, porque la parte literal del primer monomio está dentro de una raíz.
31 − x4
Grado: 4, término independiente: 1.
4
No es un polinomio, porque el exponente del primer monomio no es un número natural.
5x³ + x5 + x²
Grado: 5, término independiente: 0.
6x − 2 x−3 + 8
No es un polinomio, porque el exponente del 2º monomio no es un número natural.
7
Grado: 3, término independiente: −7/2.
4
Escribe:
1Un polinomio ordenado sin término independiente. 2Un polinomio no ordenado y completo. 3Un polinomio completo sin término independiente. 4Un polinomio de grado 4, completo y con coeficientes impares.
Solución
Escribe:
1Un polinomio ordenado sin término independiente.
3x4 − 2x
2Un polinomio no ordenado y completo.
3x − x² + 5 − 2x³
3Un polinomio completo sin término independiente.
Imposible
4Un polinomio de grado 4, completo y con coeficientes impares.
x4 − x³ − x² + 3x + 5