Consideremos p(x) un polinomio de tal manera que p(-x)=-p(x). El residuo de p(x)
al dividir entre x-4 es 8. ¿Cuál es el residuo de dividir p(x) entre (X-4)(x+4)?
Helppp

Respuestas

Respuesta dada por: kombatscrpin
0

Respuesta:

Es 32/x

Explicación paso a paso:

Primero, hay que considerar que p(-x)=-p(x), por lo que podemos decucir que es una literal algebraica solamente, pues de lo contrario el cambiar el signo de "x" en el polinomio a negativo no tendría el mismo efecto.

Ahora que sabemos eso, podemos empezar a dividir los polinomios:

x/x-4

Nos damos cuenta que este residuo se obtiene siempre que el polinomio que desconocemos sea 2x:

2x/x-4

Entonces multiplicamos el x-4 por dos.

x(2) =2x

-4(2) = -8

Lo restamos

2x

-2x - (-8)

0x + 8

Ahora que conocemos el polinomio, pasamos a dividirlo entre el otro.

\frac{2x}{(x-4)(x+4)} = \frac{2x}{x^{2}-16 }

Aplicamos la división de polinomios y nos resulta de cociente 2/x para que el residuo sea 32/x:

x^2(2/x) = 2x

-16(2/x) = -32/x

Lo restamos:

2x

-2X - (-32/X)

0x + 32/x

Preguntas similares