• Asignatura: Matemáticas
  • Autor: ymanzurlara99
  • hace 5 años

Determina USANDO LA FÓRMULA GENERAL la solución de la ecuación
33x - 7 + 10x^2 = 0

Respuestas

Respuesta dada por: roycroos
6

Recordemos que una ecuación cuadrática tiene la siguiente forma:

                                          \boxed{\mathrm{\boldsymbol{ax^2+bx+c=0}}}

Por la fórmula general tenemos que:

                                     \boldsymbol{\boxed{\mathsf{x_{1,2}=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}}}}

En el problema tenemos que: a = 33, b = 10, c = -7  

Entonces reemplazamos

                                \center x_{1,2}=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}\\\\\\\center x_{1,2}=\dfrac{-(10)\pm \sqrt{(10)^2-[4(33)(-7)]}}{2(33)}\\\\\\\center x_{1,2}=\dfrac{-10\pm \sqrt{100-(-924)}}{66}\\\\\\\center x_{1,2}=\dfrac{-10\pm \sqrt{1024}}{66}\\\\\\\center x_{1,2}=\dfrac{-10\pm32}{66}\\\\\\\\

               \center \Rightarrow\:x_{1}=\dfrac{-10+32}{66}\\\\\\\center x_{1}=\dfrac{22}{66}\\\\\\ \center x_{1}=\dfrac{{22\!\!\!\!\!\!\!\dfrac{\hspace{0.4cm}}{~}^1}}{66\!\!\!\!\!\!\!\dfrac{\hspace{0.4cm}}{~}_3}\\\\\\\center \boxed{\boxed{\boldsymbol{x_{1}=\dfrac{1}{3}}}}\\\\\\\\                              \center \Rightarrow\:x_{2}=\dfrac{-10-32}{66}\\\\\\\center x_{2}=\dfrac{-42}{66}\\\\\\\center x_{1}=-\dfrac{{42\!\!\!\!\!\!\!\dfrac{\hspace{0.4cm}}{~}^7}}{66\!\!\!\!\!\!\!\dfrac{\hspace{0.4cm}}{~}_{11}}\\\\\\\center \boxed{\boxed{\boldsymbol{x_{2}=-\dfrac{7}{11}}}}

                                                                                                          〆ʀᴏɢʜᴇʀ ✌

Tareas similares:

  ✔ https://brainly.lat/tarea/19356545

  ✔ https://brainly.lat/tarea/20302726

  ✔ https://brainly.lat/tarea/19393037

  ✔ https://brainly.lat/tarea/19390997

  ✔ https://brainly.lat/tarea/19356545

Preguntas similares