• Asignatura: Matemáticas
  • Autor: alumnohms2019
  • hace 5 años

¿Entre que dos numeros consecutivos se encuentran estas raices cuadradas?
. √51 . √35 . √78 . √80


alumnohms2019: porfi contestadd lo necesitoo xd

Respuestas

Respuesta dada por: preju
7

EJERCICIOS  CON  RADICALES

Este ejercicio puede resolverse con dos procedimientos distintos y sobreentendiendo que los números del ejercicio han de ser naturales, o sea, sin decimales.

1º procedimiento .- Usando la calculadora para saber las raíces de esos números.

Así tendremos lo siguiente:

  • √51 = 7,14142842854285... lo cual nos dice que los números consecutivos entre los cuales se encuentra este resultado son 7 y 8
  • √35 = 5,916079783099616... y los números son 5 y 6
  • √78 = 8,831760866327847... y los números son 8 y 9
  • √80 = 8,944271909999159... y los números son 8 y 9

2º procedimiento .-

Se trata de calcular mentalmente el cuadrado perfecto anterior al número que nos aparece en el radicando.

Así tenemos que el cuadrado perfecto anterior a 51 es 49 que es 7² por tanto ya de ahí deducimos que los números buscados son el 7 y su consecutivo el 8.

Lo mismo con los demás.

Una observación final es que también nos valdría trabajar en el conjunto de los números enteros que son los que abarcan a todos los números no decimales con signo doble, o sea, positivo y negativo.

Y nos valdría ese conjunto porque ya se sabe que las raíces cuadradas tienen signo doble y podríamos resolver así:

  • ±√51 = 7,14142842854285... y los números son  +7 y +8, -7 y -8
  • ±√35 = 5,916079783099616... y los números son  +5 y +6, -5 y -6
  • ±√78 = 8,831760866327847... y los números son +8 y +9, -8 y -9
  • ±√80 = 8,944271909999159... y los números son +8 y +9, -8 y -9

Preguntas similares