Resolver los siguientes problemas determinando: datos, incógnita, planteo, solución, comprobación y respuesta.
1) Hallar un numero negativo tal que la suma de su cuadrado y el quíntuplo del numero sea igual a 14.
2) El largo de un rectángulo excede 6 cm al ancho. Si el área es 720 cm², ¿cuáles son sus dimensiones?.
3) La suma de los cuadrados de dos números naturales consecutivos es 181. Halla dichos números.
4) Juan tiene 3 años más que Ana. Si multiplicamos sus edades el resultado es 130. ¿Cuántos años tiene cada uno?.
Respuestas
Respuesta:
No se la 1 pero la respuesta de las 3 restantes son:
2: Las dimensiones son:
Largo = 24 + 6 = 30 cm
Ancho = 24 cm
3: Los números son: 9 y 10
4: Ana tiene 10 años y Juan 13 años
Explicación paso a paso:
2: A = b x h
720 = (6+x) . x
720 = 6x + x al cuadrado
0 = x al cuadrado + 6x -720
0 = x +30 = +30x
x -24 = -24x
6x
Se cambian los signos:
x = -30 x = 24
se coge el signo positivo, porque no puede haber una medida negativa; entonces x = 24
3: Sea el primer número = T
Sea el segundo número = T + 1
Sea el cuadrado del primer número = T²
Sea el cuadrado del segundo número = (T + 1)²
Planteamos y calculamos dichos números:
T² + (T + 1)² = 181
T² + T² + 2T + 1 = 181
2T² + 2T + 1 = 181
2T² + 2T + 1 - 181 = 0
2T² + 2T - 180 = 0----------------Simplificamos la ecuación por comodidad
T² + T - 90 = 0---------------Por factorización.
(T + 10) (T - 9) = 0
T + 10 = 0 T - 9 = 0
T = - 10 T = 9
Rpt. Los números son: 9 y 10
4: Tenemos.
Edad de Ana = x
Edad de Juan = x + 3
x(x + 3) = 130
x² + 3x = 130
x² + 3x - 130 = 0 factorizas trinomio de la forma x² + bx + c
(x + 13)(x - 10) = 0 Tiene 2 soluciones reales
x + 13 = 0
x = - 13
o
x - 10 = 0
x = 10
Es coges el valor positivo por tratarse de una edad
x = 10
Edad Ana = x = 10 años
Edad de Juan = x + 3 = 10 + 3 = 13 años
Respuesta.
Ana tiene 10 años y Juan 13 años
LISTO, PARA QUE MAS!!!
x+2=0 x-7=0
x=-2 x=7
Planteo:
-5x+x²=14
Solución: