en cada item se define el término general de una sucesión (a) calcula los primeros cinco termino
Respuestas
Respuesta:
Es un ejemplo
Explicación:
El término general de una sucesión es un criterio que nos permite determinar cualquier término de la sucesión, se representa por a_{n}.
1 Comprobar si la sucesión 8,3,-2,-7,-12,... es una progresión aritmética.
3-8=-5
-2-3=-5
-7-(-2)=-5
-12-(-7)=-5
d=-5
a_{n}=8+(n-1)(-5)=8-5n+5=-5n+13
2 Comprobar si la sucesión 3,6,12,24,48,... es una progresión geométrica.
6\div 3=2
12\div 6=2
24\div 12=2
48\div 24=2
r=2
a_{n}=3\cdot 2^{n-1}
3 Comprobar si los términos de la sucesión 4,9,16,25,36,49,... son cuadrados perfectos.
2^{2},3^{2},4^{2},5^{2},6^{2},7^{2},...
Observamos que las bases están en progresión aritmética, siendo d=1, y el exponente es constante
b_{n}=2+(n-1)\cdot 1=2+n-1=n+1
Por lo que el término general es:
a_{n}=(n+1)^{2}
También nos podemos encontrar con sucesiones cuyos términos son números próximos a cuadrados perfectos
5,10,17,26,37,50,...
2^{2}+1,3^{2}+1,4^{2}+1,5^{2}+1,6^{2}+1,7^{2}+1,...
Hallamos el término general como vimos en el ejemplo anterior y le sumamos 1.
a_{n}=(n+1)^{2}+1
6,11,18,27,38,51,...
2^{2}+2,3^{2}+2,4^{2}+2,5^{2}+2,6^{2}+2,7^{2}+2,...
a_{n}=(n+1)^{2}+2
3,8,15,24,35,48,...
2^{2}-1,3^{2}-1,4^{2}-1,5^{2}-1,6^{2}-1,7^{2}-1,...
a_{n}=(n+1)^{2}-1
2,7,14,23,34,47,...
2^{2}-2,3^{2}-2,4^{2}-2,5^{2}-2,6^{2}-2,7^{2}-2,...
a_{n}=(n+1)^{2}-2
4 Si los términos de la sucesión cambian consecutivamente de signo.
Si los términos impares son negativos y los pares positivos: Multiplicamos a_{n} por (-1)^{n}.
-4,9,-16,25,-36,49,...
a_{n}=(-1)^{n}(n+1)^{2}
Si los términos impares son positivos y los pares negativos: Multiplicamos a_{n} por (-1)^{n-1}.
4,-9,16,-25,36,-49,...
a_{n}=(-1)^{n-1}(n+1)^{2}
5 Si los términos de la sucesión son fraccionarios (no siendo una progresión).
Se calcula el término general del numerador y denominador por separado.
a_{n}=\cfrac{b_{n}}{c_{n}}
\cfrac{2}{4},\cfrac{5}{9},\cfrac{8}{16},\cfrac{11}{25},\cfrac{14}{36},...
Tenemos dos sucesiones:
2,5,8,11,14,...
4,9,16,25,36,...
La primera es una progresión aritmética con d=3, la segunda es una sucesión de cuadrados perfectos
a_{n}=\cfrac{3n-1}{(n+1)^{2}}
Para poder calcular los primeros cinco términos necesitamos saber el ítem y en que contexto se emplea.
La palabra ítem tiene diversos significados según su uso. Sin embargo, uno de las más generales es una elemento que compone un conjunto de otros.
Por ejemplo:
Los números puede ser un ítem y esta compuesto por números romanos, decimales, entre otros.
Asimismo puede hacer referencia a los puntos que deseamos abarcar ya sea en una conversación o en el análisis de algún texto.
Para conocer más visita: https://brainly.lat/tarea/35137738