Uno de los extremos de un segmento rectilíneo de longitud 5 es el punto (3,-2). Si la abscisa del otro extremo es 6 ¿Cuales son los valores posibles de su ordenada? Con procedimiento por favor. 

Respuestas

Respuesta dada por: DrakeNout
3
La distancia del segmento o longitud de la linea esta dada por la ecuación:
d= \sqrt{(x_{1}-x_{0} )^{2}+(y_{1}-y_{0} )^{2} }

Despejando la ecuacion obtenemos que:
y_{1}=y_{0}(+-) \sqrt{d^2-(x_{1}-x_{0})^2}

Sabiendo que:
Punto 1=(x_{0};y_{0})  \\ Punto 2=(x_{1};y_{1})

Punto 1=(3;-2) \\ Punto 2=(6;y_{1})

Reemplazando obtenemos:
y_{1}=-2(+-)4 \\ y_{1}=-2+4=2 \\ y_{1}=-2-4=-6

Preguntas similares