\lim_{n \to \infty} \left[\begin{array}{ccc}1&2&\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \\\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&482938382\end{array}\right] &5&6\\7&8&\sqrt[n]{ \lim_{n \to \infty} \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] _n } \end{array}\right] _n - \sqrt[6]{6} x x^{\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&\left \{ {{y=\int\limits^a_b {x} \, } \atop {x=2}} \right. \end{array}\right] x \left[\begin{array}{ccc}1&2&3\\4&5&\left[\begin{array}{ccc}1&2&3\\4&5&6\\7& \lim_{n \to \infty} a_n &\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \end{array}\right] \\\int\limits^a_b {x} \, dx &8&\leq \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \pi \frac{45}{\left \{ {{y=2} \atop {x=\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] }} \right. 79\sqrt[n]{\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] } } \end{array}\right] + 830\left[\begin{array}{ccc}1&\sqrt{\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] } &3\\4&5&6\\7&8&9\end{array}\right]

Respuestas

Respuesta dada por: severus1305
3

Respuesta:

Sale \left[\begin{array}{ccc} \lim_{5 \to \infty} 9_9  &78&3\\4&7&36\\7&8&8\pi \left \{ {{7=2} \atop {7=7_{4} }} \right. \end{array}\right]

Y eso es igual a

\lim_{\pi \neq  \to \infty} 8932928\frac{7\left \ {{6x_{123} =2} \atop {x=2}} \right. }{8} _74

Saludos.

Respuesta dada por: angeldemonic369
2

Respuesta:

Hay dos respuestas, la primera es la que está con severus1305 y la segunda es:

\lim_{35 \to \infty} 4_\left[\begin{array}{ccc}\frac{7}{5} &8&2\\702&8&6\\99&8&9\end{array}\right]

Espero haberte ayudado

Preguntas similares