AYUDA PORFAVOR
1.-El perímetro de un triángulo Equilátero es de 36. el área de dicho triángulo es:
2.- Calcular el área de un triángulo equilátero que tiene 8 de altura.
Respuestas
Respuesta:
la 2 se parece mucho a un problema que te ayudé la vez pasada
Saludos
- 1.- El perímetro de un triángulo Equilátero es de 36. el área de dicho triángulo es:
Recuerda que el perímetro de un polígono regular es la cantidad de lados por la medida de uno de sus lados porque todos sus lado son iguales
Piden el área del triángulo equilátero pero recuerda que el área del triángulo equilátero se calcula:
Como dato tenemos que el perímetro de un triángulo equilátero es 36 y como sabemos que el triángulo equilátero tiene sus lados iguale, entonces:
Ya que sabemos cuanto es el área podemos reemplazar en la fórmula para calcular sus área:
- 2.- Calcular el área de un triángulo equilátero que tiene de altura.
Sabemos que el triángulo equilátero tiene todos sus lados iguales al igual que sus ángulos que miden todos 60°.
Recuerda que el área del triángulo equilátero se calcula:
Te recomiendo graficarlo para entender mejor (yo lo grafique así que puedes fijarte en la segunda imagen que te adjunte), para saber cuanto es el área debemos calcular uno de sus lados ya que todos miden igual y para eso utilizamos el dato del problema , después de graficarlo trazamos una altura que corta a la base en partes iguales al igual que el ángulo (fíjate en la segunda imagen).
Después de trazar la altura observamos que se forman 2 triángulos rectángulos pero solo utilizaremos uno de ellos, el triángulo rectángulo que analizamos es un triángulo rectángulo notable muy reconocido de 30°-60° (si no te recuerdas puedes observar en la primera imagen).
La altura vendría ser el cateto opuesto de 60° que es igual a por una constante que llamaremos
Simplificamos:
Pero a nosotros solo nos interesa cuanto es el lado del triángulo, y observamos que el lado es la hipotenusa del triángulo y es igual a 2 por la misma constante:
Conseguimos el lado del triángulo equilátero que es igual a
Ahorra que encontramos el valor del lado reemplazaremos con la fórmula
Simplificamos:
Para saber su area, la formula es:
Para calcular la altura, hacemos el siguiente cálculo:
h =
h =
h = 10,39 cm
Reemplazo en la fórmula principal:
Area = 62,35 cm²