ax si 0 ≤ x <100
! f (x) =⎨ a(−x+ 200) si 100 ≤ x ≤ 200
⎪ ⎩ 0 para cualquier otro caso
Calcular el valor esperado de la variable
Respuestas
El valor esperado o esperanza de una variable aleatoria tiene su origen en los juegos de azar, debido a que los jugadores deseaban saber cual era su esperanza de ganar o perder con un juego determinado. Como a cada resultado particular del juego le corresponde una probabilidad determinada, esto equivale a una función de probabilidad de una variable aleatoria y el conjunto de todos los resultados posibles del juego estará representado por la distribución de probabilidad de la variable aleatoria. El valor esperado o esperanza es muy importante, ya que es uno de los parámetros que describen una variable aleatoria.
Lo anterior significa, que para calcular E(X) se multiplica cada valor que puede tomar la variable aleatoria por la probabilidad que le corresponde y después se suman esos productos.
El valor esperado representa el valor promedio que se espera suceda, al repetir el experimento en forma independiente una gran cantidad de veces. El valor esperado se interpreta físicamente como el centro de masa o centro de gravedad de la distribución de probabilidad, por lo que es igual a la media o promedio aritmético, los cuales se representan con la letra u.