Si un numero no es cuadrado perfecto ¿como se llama su raiz?
porfavor ayudenme y no pongan huevadas
es de primaria
Respuestas
Respuesta:
es un número Natural
Explicación paso a paso:
La cantidad de factores (divisores) de un número cuadrado perfecto es siempre impar. O dicho de otro modo, se cumple que para todo número natural que no es cuadrado perfecto, la cantidad de sus factores es un número par.
Todo número natural se puede descomponer en factores primos y sus correspondientes exponentes: {\displaystyle N=p_{1}^{a}.p_{2}^{b}.p_{3}^{c}...}{\displaystyle N=p_{1}^{a}.p_{2}^{b}.p_{3}^{c}...} ,
donde N es un número natural, {\displaystyle p_{1},p_{2},...}{\displaystyle p_{1},p_{2},...} son números primos y a,b,c... sus correspondientes exponentes. Dado que todos los posibles divisores de N son una combinación de este producto desde a=0,1,2,..a, b=0,1,2,...b y c=0,1,2,...c, la cantidad de divisores de N es:
n = (a+1).(b+1).(c+1)... donde n es la cantidad de factores o divisores de cualquier número natural.
Puesto que en un número cuadrado perfecto los exponentes a, b, c, ... son números pares, todos los factores de n serán impares y por tanto el producto también es un número impar. Esto puede comprobarse revisando el Anexo:Tabla de divisores
Los primeros 50 cuadrados perfectos son:
02 = 0 ((sucesión A000290 en OEIS))
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
102 = 100
112 = 121
122 = 144
132 = 169
142 = 196
152 = 225
162 = 256
172 = 289
182 = 324
192 = 361
202 = 400
212 = 441
222 = 484
232 = 529
242 = 576
252 = 625
262 = 676
272 = 729
282 = 784
292 = 841
302 = 900
312 = 961
322 = 1024
332 = 1089
342 = 1156
352 = 1225
362 = 1296
372 = 1369
382 = 1444
392 = 1521
402 = 1600
412 = 1681
422 = 1764
432 = 1849
442 = 1936
452 = 2025
462 = 2116
472 = 2209
482 = 2304
492 = 2401
502 = 250
Respuesta:
La cantidad de factores (divisores) de un número cuadrado perfecto es siempre impar. O dicho de otro modo, se cumple que para todo número natural que no es cuadrado perfecto, la cantidad de sus factores es un número par.
Todo número natural se puede descomponer en factores primos y sus correspondientes exponentes: {\displaystyle N=p_{1}^{a}.p_{2}^{b}.p_{3}^{c}...}{\displaystyle N=p_{1}^{a}.p_{2}^{b}.p_{3}^{c}...} ,
donde N es un número natural, {\displaystyle p_{1},p_{2},...}{\displaystyle p_{1},p_{2},...} son números primos y a,b,c... sus correspondientes exponentes. Dado que todos los posibles divisores de N son una combinación de este producto desde a=0,1,2,..a, b=0,1,2,...b y c=0,1,2,...c, la cantidad de divisores de N es:
n = (a+1).(b+1).(c+1)... donde n es la cantidad de factores o divisores de cualquier número natural.
Puesto que en un número cuadrado perfecto los exponentes a, b, c, ... son números pares, todos los factores de n serán impares y por tanto el producto también es un número impar. Esto puede comprobarse revisando el Anexo:Tabla de divisores
Los primeros 50 cuadrados perfectos son:
02 = 0 ((sucesión A000290 en OEIS))
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
102 = 100
112 = 121
122 = 144
132 = 169
142 = 196
152 = 225
162 = 256
172 = 289
182 = 324
192 = 361
202 = 400
212 = 441
222 = 484
232 = 529
242 = 576
252 = 625
262 = 676
272 = 729
282 = 784
292 = 841
302 = 900
312 = 961
322 = 1024
332 = 1089
342 = 1156
352 = 1225
362 = 1296
372 = 1369
382 = 1444
392 = 1521
402 = 1600
412 = 1681
422 = 1764
432 = 1849
442 = 1936
452 = 2025
462 = 2116
472 = 2209
482 = 2304
492 = 2401
502 = 250
Explicación paso a paso: