log X + log (X+3) = 2 log (5-X)
2logX = 3+log X/10
log (2X- 7) – log(X-1) = log5
log X + log (X-3) = 2log X +1
log 16- X² / log (3X – 4 )² = 2
log 2 + log (11 – X²) = 2 log (5-X)
log X + log (X+9) = 1
log (5X+6) / log X = 2
log 8 + log x + log X² = 3
log 4 + log X = 2
AYUDA ES PARA EL MIERCOLEEEES
Respuestas
Al resolver las expresiones logarítmicas se obtiene:
1. x = 25/13 ⇒ No tiene solución real
2. x = 100
3. x = -2/3 ⇒ No tiene solución real
4. x = -1/5
5. x ≈ 0.749 y x ≈ 1.865
6. x = 3 y x = 1/3
7. x = 1 y x = -10
8. x = 6 y x = -1
9. x = 5
10. x = 25
Explicación paso a paso:
1. log (x) + log (x+3) = 2 log (5-x)
Aplicar propiedades de logaritmos;
log (a) + log (b) = log (a · b)
log(a)ᵇ = b log (a)
log [(x)(x + 3)] = log (5-x)²
log (x² + 3x) = log (25 - 10x + x²)
Aplicar base 10;
₁₀[log (x² + 3x) = ₁₀[log (25 - 10x + x²)]
x² + 3x = 25 - 10x + x²
10x + 3x = 25
13x = 25
x = 25/13
2. 2 log (x) = 3+log x/10
Aplicar propiedades de logaritmos;
- log(a)ᵇ = b log (a)
- log(a/b) = log(a) - log(b)
log(x²) = 3 + log(x) - log(10)
log(x²) = 3 + log(x) - 1
log(x²) = 2 + log(x)
log(x²) - log(x) = 2
log(x²/x) = 2
₁₀log (x) = ₁₀2
x = 100
3. log (2x- 7) – log(x-1) = log(5)
Sumar log(x-1) a ambos lados;
log(2x-7) - log(x-1) + log(x-1) = log(5) + log(x-1)
log(2x-7) = log(5) + log(x-1)
Aplicar propiedades de logaritmos;
- log (a) + log (b) = log (a · b)
log(2x-7) = log [(5)(x-1)]
₁₀log(2x-7) = ₁₀log (5x-5)
2x - 7 = 5x -5
3x = -2
x = -2/3
4. log (x) + log (x-3) = 2log (x +1)
Aplicar propiedades de logaritmos;
- log (a) + log (b) = log (a · b)
- log(a)ᵇ = b log (a)
log [x(x-3)] = log(x+1)²
₁₀log (x²-3x) = ₁₀log(x²+2x+1)
x²-3x = x²+2x+1
5x = -1
x = -1/5
5. log (16- x²) / log (3x – 4 )² = 2
Multiplicar por log (3x – 4 )² a ambos lados;
[log (3x – 4 )²] [log (16- x²)/log (3x – 4 )²] = 2 log (3x – 4 )²
log (16- x²) = 2 log (3x – 4 )²
Aplicar propiedades de logaritmos;
- log(a)ᵇ = b log (a)
₁₀log (16- x²) = ₁₀log (3x – 4 )⁴
16- x² = (3x – 4 )⁴
16- x² = x⁴-4(27x³)(4) +6(9x²)(16) -4(3x)(64) + 256
16- x² = x⁴-432x³ +864x² -768x + 256
x⁴-432x³ +865x² -768x + 240 =0
x ≈ 0.749 y x ≈ 1.865
6. log (2) + log (11 – x²) = 2 log (5-x)
Aplicar propiedades de logaritmos;
- log (a) + log (b) = log (a · b)
- log(a)ᵇ = b log (a)
₁₀log[2(11-x²)] = ₁₀log(5-x)²
22 - 2x² = 25 - 10x + x²
3x² -10x + 3 = 0
x = 3 y x = 1/3
7. log (x) + log (x+9) = 1
Aplicar propiedades de logaritmos;
- log (a) + log (b) = log (a · b)
₁₀log [x(x+9)] = ₁₀1
x² + 9x = 10
x² + 9x - 10 =0
x = 1 y x = -10
8. log (5x+6)/log (x) = 2
Multiplicar log (x) a ambos lados;
[log (5x+6)/log (x)] log(x) = 2 log (x)
log (5x+6) = 2 log (x)
Aplicar propiedades de logaritmos;
- log(a)ᵇ = b log (a)
₁₀log (5x+6) = ₁₀log (x²)
5x + 6 = x²
x² -5x - 6 =0
x = 6 y x = -1
9. log (8) + log (x) + log (x²) = 3
Aplicar propiedades de logaritmos;
- log (a) + log (b) = log (a · b)
log[(8)(x)(x²) = 3
₁₀log(8x³) = ₁₀3
8x³ = 1000
x³ = 1000/8
x³ = 125
x = ∛125
x = 5
10. log (4) + log (x) = 2
Aplicar propiedades de logaritmos;
- log (a) + log (b) = log (a · b)
₁₀log(4x) = ₁₀2
4x = 100
x = 25