transforme por el logaritmo de un numero desconocido ese mismo numero
a) log x= log 5-log 3+log 11 B) log y=log 6+log 3-1/5 log 5 C)log z=3 log 2-1/2 log 4+log5 D) log t=1/3log (a+b)-(log a+2 log (b+c)) E) log w=1/3(log a+1/4(log a+3 log c)
F)log x=-(log a log b-log a log b log c)
Respuestas
Respuesta dada por:
17
En las preguntas donde escribi: OJO , son las respuestas dadas incorrectamente por el usuario anterior que respondio a la pregunta.
Propiedades a utilizar:
(1) Logb A + Logb B = Logb A.B
(2) Logb A - Logb B = Logb A/B
(3) Logb A = Logb B , si y solo si : A=B
(4) Logb A^n = n Logb A , y viseversa
"b" , es la base del logaritmo.
" ^ " , significa que el numero esta elevado a.
Ejm: 5^2 = 5² = 25

![B) log y=log 6+log 3-1/5 log 5
log y= log(6)(3) - log5^{1/5}
log y = log (18) - log 5{1/5}
log y = log (18/5^{1/5} )
y = 8/5^{1/5}
y=8/ \sqrt[5]{5} B) log y=log 6+log 3-1/5 log 5
log y= log(6)(3) - log5^{1/5}
log y = log (18) - log 5{1/5}
log y = log (18/5^{1/5} )
y = 8/5^{1/5}
y=8/ \sqrt[5]{5}](https://tex.z-dn.net/?f=B%29+log+y%3Dlog+6%2Blog+3-1%2F5+log+5%0A%0A%0A++++log+y%3D+log%286%29%283%29+-+log5%5E%7B1%2F5%7D%0A%0A%0A++++log+y+%3D+log+%2818%29+-+log+5%7B1%2F5%7D%0A%0A%0A+++++log+y+%3D+log+%2818%2F5%5E%7B1%2F5%7D+%29%0A%0A+y+%3D+8%2F5%5E%7B1%2F5%7D%0A%0Ay%3D8%2F+%5Csqrt%5B5%5D%7B5%7D+)
C) log z=3 log 2-1/2 log 4+log5
log z = log2³ - log4^1/2 + log5
(*) log 2³ = log 8 (*) 4^1/2 = 2
Entonces:
log z = log 8 - log 2 + log 5
log z = log 8/2 + log 5
log z = log 4 + log 5
log z = log 4.5
log z = log 20
z = 20
OJO:
![D)log t=1/3 log (a+b)-(log a+2 log (b+c))
log t = log (a+b)^{1/3} - [ log a + log (b+c)^2 ]
log t = log (a+b)^{1/3} - [ log a(b+c)^2]
log t = log (a+b)^{1/3}/ a(b+c)²
t = (a+b)^{1/3} / a (b+c)^2
D)log t=1/3 log (a+b)-(log a+2 log (b+c))
log t = log (a+b)^{1/3} - [ log a + log (b+c)^2 ]
log t = log (a+b)^{1/3} - [ log a(b+c)^2]
log t = log (a+b)^{1/3}/ a(b+c)²
t = (a+b)^{1/3} / a (b+c)^2](https://tex.z-dn.net/?f=D%29log+t%3D1%2F3+log+%28a%2Bb%29-%28log+a%2B2+log+%28b%2Bc%29%29%0A%0A%0A+++log+t+%3D+log+%28a%2Bb%29%5E%7B1%2F3%7D++-+++%5B+log+a+%2B+log+%28b%2Bc%29%5E2+%5D%0A%0A%0A+++log+t+%3D+log+%28a%2Bb%29%5E%7B1%2F3%7D++-++%5B+log+a%28b%2Bc%29%5E2%5D%0A%0A%0A++++log+t+%3D+log+%28a%2Bb%29%5E%7B1%2F3%7D%2F+++++++++++++++++++++++a%28b%2Bc%29%C2%B2%0A%0A%0A++++++++++t+%3D++%28a%2Bb%29%5E%7B1%2F3%7D+%2F+++++++++++++++++a+%28b%2Bc%29%5E2%0A%0A)
[ Opcional ] : (a+b)^1/3 = Raiz cubica de (a+b)
(b+c)² = b² + 2bc + c²
OJO
![E) log w=(1/3)(log a+1/4(log a+3 log c)
log w = 1/3 (log a + 1/4 (log a + logc^3)
log w = 1/3 (log a + 1/4 (log a.c^3)
log w = 1/3 ( log a + log (a.c^3)^{1/4}
log w = 1/3 (log a.a^{1/4} .c^{3/4} )
log w = log [(a^{5/4})(c^{3/4})]^{1/3}
w = a^{5/12} . c^{(3/4)(1/3)}
w = a^{5/4} . c^{1/4}
w= \sqrt[4]{a^5 . c}
E) log w=(1/3)(log a+1/4(log a+3 log c)
log w = 1/3 (log a + 1/4 (log a + logc^3)
log w = 1/3 (log a + 1/4 (log a.c^3)
log w = 1/3 ( log a + log (a.c^3)^{1/4}
log w = 1/3 (log a.a^{1/4} .c^{3/4} )
log w = log [(a^{5/4})(c^{3/4})]^{1/3}
w = a^{5/12} . c^{(3/4)(1/3)}
w = a^{5/4} . c^{1/4}
w= \sqrt[4]{a^5 . c}](https://tex.z-dn.net/?f=E%29+log+w%3D%281%2F3%29%28log+a%2B1%2F4%28log+a%2B3+log+c%29%0A%0A+++++log+w+%3D+1%2F3+%28log+a+%2B+1%2F4+%28log+a+%2B+logc%5E3%29%0A%0A%0A+++++++log+w+%3D+1%2F3+%28log+a+%2B+1%2F4+%28log+a.c%5E3%29%0A%0A%0A+++++++log+w+%3D+1%2F3+%28+log+a+%2B+log+%28a.c%5E3%29%5E%7B1%2F4%7D%0A%0A%0A++++++++++log+w+%3D+1%2F3+%28log+a.a%5E%7B1%2F4%7D+.c%5E%7B3%2F4%7D+%29%0A%0A%0A+++++++++++++++log+w+%3D+log+%5B%28a%5E%7B5%2F4%7D%29%28c%5E%7B3%2F4%7D%29%5D%5E%7B1%2F3%7D%0A%0A%0A++++++++++++++++++++++w+%3D+a%5E%7B5%2F12%7D+.++c%5E%7B%283%2F4%29%281%2F3%29%7D%0A%0A%0A+++++++++++++++++++++++++++w+%3D+a%5E%7B5%2F4%7D+.+c%5E%7B1%2F4%7D%0A%0Aw%3D+%5Csqrt%5B4%5D%7Ba%5E5+.+c%7D+%0A)
OJO:
![F) log x =- (log a . log b - log a . log b . logc]
log(x) = - ( loga^{logb} - loga^{logb.logc}
log(x) = - (log a^{logb} / a^{log b.log c} )
log (x) = - log a^{logb - logb.logc
log(x) = -1 log a^{(logb)(1-logc)
log(x) = log [a^{(logb)(1-logc)]^{-1
log (x) = log a^{(logb)(logc-1)
x=a^{logb(logc-1)
F) log x =- (log a . log b - log a . log b . logc]
log(x) = - ( loga^{logb} - loga^{logb.logc}
log(x) = - (log a^{logb} / a^{log b.log c} )
log (x) = - log a^{logb - logb.logc
log(x) = -1 log a^{(logb)(1-logc)
log(x) = log [a^{(logb)(1-logc)]^{-1
log (x) = log a^{(logb)(logc-1)
x=a^{logb(logc-1)](https://tex.z-dn.net/?f=%0A%0AF%29+log+x+%3D-+%28log+a+.+log+b++-+log+a+.+log+b+.+logc%5D%0A%0Alog%28x%29+%3D+-+%28+loga%5E%7Blogb%7D+-+loga%5E%7Blogb.logc%7D%0A%0Alog%28x%29+%3D+-+%28log+a%5E%7Blogb%7D+%2F+a%5E%7Blog+b.log+c%7D+%29%0A%0Alog+%28x%29+%3D+-+log+a%5E%7Blogb+-+logb.logc%0A%0Alog%28x%29+%3D+-1+log++a%5E%7B%28logb%29%281-logc%29%0A%0Alog%28x%29+%3D++log++%5Ba%5E%7B%28logb%29%281-logc%29%5D%5E%7B-1%0A%0Alog+%28x%29+%3D+log+a%5E%7B%28logb%29%28logc-1%29%0A%0A%0Ax%3Da%5E%7Blogb%28logc-1%29)
Propiedades a utilizar:
(1) Logb A + Logb B = Logb A.B
(2) Logb A - Logb B = Logb A/B
(3) Logb A = Logb B , si y solo si : A=B
(4) Logb A^n = n Logb A , y viseversa
"b" , es la base del logaritmo.
" ^ " , significa que el numero esta elevado a.
Ejm: 5^2 = 5² = 25
C) log z=3 log 2-1/2 log 4+log5
log z = log2³ - log4^1/2 + log5
(*) log 2³ = log 8 (*) 4^1/2 = 2
Entonces:
log z = log 8 - log 2 + log 5
log z = log 8/2 + log 5
log z = log 4 + log 5
log z = log 4.5
log z = log 20
z = 20
OJO:
[ Opcional ] : (a+b)^1/3 = Raiz cubica de (a+b)
(b+c)² = b² + 2bc + c²
OJO
OJO:
Preguntas similares
hace 7 años
hace 10 años
hace 10 años
hace 10 años
hace 10 años