Respuestas
Explicación;
Existen varios métodos pararesolver las ecuaciones cuadráticas. El método apropiado para resolver. En este curso estudiaremos los siguientes métodos: factorización, raíz cuadrada, completando el cuadrado y la fórmula cuadrática
Explicación paso a paso:
SOLUCION POR FACTORIZACION.
1. Como toda ecuación cuadrática es equivalente a una ecuación en la cual uno de sus miembros es un polinomio de segundo grado y el otro es cero; entonces, cuando el polinomio de segundo grado pueda factorizarse, se procede así:
Si ax2 + bx + c = (x + r1).(x + r2), entonces, la ecuación ax2 + bx + c = 0 es equivalente a: (x + r1).(x + r2) = 0 (1).
La ecuación (1) puede resolverse usando la propiedad del sistema de los números reales: X.Y = 0 ↔ X = 0 ν Y = 0.
2. SOLUCION POR COMPLEMENTO DE CUADRADOS.
Este método es el más antiguo que existe para encontrar las soluciones de una ecuación cuadrática.
Se supone que la ecuación: ax2 + bx + c = 0, x ≠ 0, es equivalente a la ecuación cuadrática: x2 + px = q (1).
Sumando en ambos miembros de la ecuación (1), se obtiene:
ó
Extrayendo raíz cuadrada en ambos miembros de la última igualdad (lo cual tiene sentido solo si 4q + p2 ≥ 0), se obtiene:
, de donde (2).
La fórmula (2) proporciona las dos soluciones (una para cada signo) de la ecuación cuadrática (1), que es equivalente a la ecuación: .
ax2 + bx + c = 0,
3. SOLUCION POR FORMULA GENERAL
Usando el método de completación de cuadrados, demuestre que la solución de la ecuación cuadrática: ax2 + bx + c = 0, con x ≠ 0, viene dada por :
Solución:
La ecuación: ax2 + bx + c = 0, con x ≠ 0,es equivalente a la ecuación :
Sumando ,en ambos miembros de la igualdad anterior, se obtiene:
O equivalentemente,
Extrayendo la raíz cuadrada en ambos miembros de la última igualdad(si b2-4ac ≥ 0), se obtiene:
De donde : (2)
La fórmula (2) se conoce como: fórmula general para resolver la ecuación cuadrática ax2 + bx + c = 0, con x ≠ 0.
Espero te ayude bro
Respuesta:
respondo para que le pongas coronaponle Corona