Respuestas
Respuesta:
Una función es par si, para cada x en el dominio de f , f (– x ) = f ( x ). Las funciones pares tienen simetría reflectiva a través del eje de las y . Un función es impar si, para cada x en el dominio de f , f (– x ) = – f ( x ). Las funciones impares tienen simetría rotacional de 180º con respecto del origen.
Explicación paso a paso:
Respuesta:
Las funciones pares e impares son usadas en muchas áreas del análisis matemático, especialmente en la teoría de las series de potencias y series de Fourier.
En el estudio de las funciones reales de variable real, si consideramos el punto (x; f(x)), nos interesa el comportamiento de f cuando se toma el opuesto -x. Puede suceder que f(x) obtenga el mismo resultado que f(-x), en cuyo caso se trata de una función par. También puede suceder que para f(-x), se obtenga -f(x) de modo el resultado no es el mismo que el de f(x), en cuyo caso se trata de una función impar. En el aspecto geométrico la no variación de f(x) al cambiar x a -x, revela simetría de la gráfica de f respecto al eje Oy. La variación de f(x) a -f(x) al reemplazar x por -x, indica simetría respecto al origen de coordenadas. Entre las funciones reales hay funciones pares, impares y que no asumen ninguno de los casos mencionados. Por ejemplo f(x) = ln x, no es par ni impar, ya que no podemos definir esta función para números reales negativos.
Explicación paso a paso: Es mucho pero espero te sirva :3