Cómo es el beta de los transistores grandes de potencia​

Respuestas

Respuesta dada por: ocampoalejandra001
0

Respuesta:

Explicación:Cuando el transistor está en saturación o en corte las pérdidas son despreciables. Pero si tenemos en cuenta los efectos de retardo de conmutación, al cambiar de un estado a otro se produce un pico de potencia disipada, ya que en esos instantes el producto IC x VCE va a tener un valor apreciable, por lo que la potencia media de pérdidas en el transistor va a ser mayor. Estas pérdidas aumentan con la frecuencia de trabajo, debido a que al aumentar ésta, también lo hace el número de veces que se produce el paso de un estado a otro.

Podremos distinguir entre tiempo de excitación o encendido (ton) y tiempo de apagado (toff). A su vez, cada uno de estos tiempos se puede dividir en otros dos.

Tiempo de retardo (Delay Time, td): Es el tiempo que transcurre desde el instante en que se aplica la señal de entrada en el dispositivo conmutador, hasta que la señal de salida alcanza el 10% de su valor final.

Tiempo de subida (Rise time, tr): Tiempo que emplea la señal de salida en evolucionar entre el 10% y el 90% de su valor final.

Tiempo de almacenamiento (Storage time, ts): Tiempo que transcurre desde que se quita la excitación de entrada y el instante en que la señal de salida baja al 90% de su valor final.

Tiempo de caída (Fall time, tf): Tiempo que emplea la señal de salida en evolucionar entre el 90% y el 10% de su valor final.

Por tanto, se pueden definir las siguientes relaciones :

Es de hacer notar el hecho de que el tiempo de apagado (toff) será siempre mayor que el tiempo de encendido (ton).

Los tiempos de encendido (ton) y apagado (toff) limitan la frecuencia máxima a la cual puede conmutar el transistor:

Volver

Otros parámetros importantes

Corriente media: es el valor medio de la corriente que puede circular por un terminal (ej. ICAV, corriente media por el colector).

Corriente máxima: es la máxima corriente admisible de colector (ICM) o de drenador (IDM). Con este valor se determina la máxima disipación de potencia del dispositivo.

VCBO: tensión entre los terminales colector y base cuando el emisor está en circuito abierto.

VEBO: tensión entre los terminales emisor y base con el colector en circuito abierto.

Tensión máxima: es la máxima tensión aplicable entre dos terminales del dispositivo (colector y emisor con la base abierta en los bipolares, drenador y fuente en los FET).

Estado de saturación: queda determinado por una caída de tensión prácticamente constante. VCEsat entre colector y emisor en el bipolar y resistencia de conducción RDSon en el FET. Este valor, junto con el de corriente máxima, determina la potencia máxima de disipación en saturación.

Relación corriente de salida - control de entrada: hFE para el transistor bipolar (ganancia estática de corriente) y gds para el FET (transconductancia en directa).

Volver

Modos de trabajo

Existen cuatro condiciones de polarización posibles. Dependiendo del sentido o signo de los voltajes de polarización en cada una de las uniones del transistor pueden ser :

Región activa directa: Corresponde a una polarización directa de la unión emisor - base y a una polarización inversa de la unión colector - base. Esta es la región de operación normal del transistor para amplificación.

 

Región activa inversa: Corresponde a una polarización inversa de la unión emisor - base y a una polarización directa de la unión colector - base. Esta región es usada raramente.

 

Región de corte: Corresponde a una polarización inversa de ambas uniones. La operación en ésta región corresponde a aplicaciones de conmutación en el modo apagado, pues el transistor actúa como un interruptor abierto (IC 0).

 

Preguntas similares