las magnitudes de A al cuadrado DP. B cuando A vale 20 B es 18. Que valor toma A cuando B vale 72?
Respuestas
Respuesta:
Dadas las magnitudes "A" y "B", si "A" es DP a √B y si: A = 6; cuando: B = 16, entonces B= 36 cuando A = 9.
Si A IP a √B y DP a C. Si A=5; cuando: B=16 y C=14, entonces A=6 cuando B=25 y C=21
Por definición:
Dos magnitudes son directamente proporcionales cuando al aumentar una de ellas, la otra también aumenta, además, el cociente de estas es igual a una constante.
En nuestro caso,
Si "A" es DP a √B, etonces:
A/√B = k
Si: A = 6; cuando: B = 16, entonces:
k = 6/√16
k = 6/4
k = 3/2
Cuando A = 9, entonces:
9/√B = 3/2
18/3 = √B
6= √B
B = 36
Por definición:
Dos magnitudes son inversamente proporcionales cuando al aumentar una de ellas, la otra disminuye, además el producto de estas es igual a una constante.
Sea A IP a √B y DP a C, es decir:
A*√B/C = k
Sabiendo que: A=5; cuando: B=16 y C=14, es decir:
5*√16/14 = k
k = 20/14
k = 10/7
Calculando el valor de A cuando: B=25 y C=21
A*√B/C = k
A*√25/21 = 10/7
A*5/21 = 10/7
A = (21*10)/(7*5)
A = 210/35
A = 6
Explicación paso a paso:
El valor de A, cuando B es 72 y A es directamente proporcional a B, es:
80
¿Qué es una proporción?
Es la relación que existe entre dos o más variables.
- D. P.: una proporción es directa si una variable aumenta la otra también aumenta y si una variable disminuye la otra también disminuye.
A/B = K
- I. P.: una proporción es inversa cuando una variable aumenta la otra disminuye y si una variable disminuye la otra aumenta.
A × B = K
¿Qué valor toma A cuando B vale 72?
Relación:
A es I.D. ⇒ B
Expresión:
k = A/B
Siendo;
- A = 20
- B = 18
Sustituir;
k = 20/18
k = 10/9
Ahora sí:
- B = 72
Sustituir;
A/72 = 10/9
Despejar A;
A = (10/9)(72)
A = 80
Puedes ver más sobre relación y proporción aquí: https://brainly.lat/tarea/4720202
#SPJ2