Respuestas
Respuesta:Objetivos de aprendizaje
· Sumar números complejos.
· Restar números complejos.
· Multiplicar números complejos.
· Encontrar conjugados de números complejos.
· Dividir números complejos.
Introducción
Cada vez que se presentan nuevos tipos de números, una de las primeras preguntas es, “¿Cómo se suman?” En este tema, aprenderás a sumar números complejos así como a restarlos, multiplicarlos y dividirlos.
Sumando y restando números complejos
Primero, considera la siguiente expresión.
(6x + 8) + (4x + 2)
Para simplificar esta expresión, combina los términos semejantes, 6x y 4x. Estos son los términos semejantes porque tienen la misma variable con el mismo exponente. De manera similar, 8 y 2 son términos semejantes porque ambos son constantes, sin variables
(6x + 8) + (4x + 2) = 10x + 10
De la misma manera, puedes simplificar expresiones con radicales.
Puedes sumar con porque ambos términos tienen el mismo radical, , del mismo modo que 6x y 4x tienen la misma variable y exponente.
El número i parece una variable, pero recuerda que es igual a . Lo interesante es que no hay reglas nuevas de las cuales preocuparse, ya sea que lo trates como una variable o un radical, aplican las mismas reglas para sumar y restar números complejos. Combinas las partes imaginarias (los términos con i) y combinas las partes reales.
Ejemplo
Problema
Sumar. (−3 + 3i) + (7 – 2i)
−3 + 3i + 7 – 2i =
−3 + 7 + 3i – 2i
Reacomoda las sumas para juntar los términos semejantes.
Respuesta
−3 + 7 = 4 y
3i – 2i = (3 – 2)i = i
(−3 + 3i) + (7 – 2i) = 4 + i
Combina los términos semejantes.
Ejemplo
Problema
Restar. (−3 + 3i) – (7 – 2i)
(−3 + 3i) – (7 – 2i) =
−3 + 3i – 7 + 2i
Asegúrate de distribuir el signo de resta a todos los términos del sustraendo.
−3 – 7 + 3i + 2i
Reacomoda las sumas para juntar los términos semejantes.
Respuesta
−3 – 7 = −10 y
3i + 2i = (3 + 2)i = 5i
(−3 + 3i) – (7 – 2i) = 10 + 5i
Combina los términos semejantes.
Restar. (5 + 3i) – (3 – i)
A) 2 + 4i
B) 6
C) 2 + 2i
D) 8 + 2i
QUE TE SIRVA:D