(tgα+tgβ)/(cotgα+cotgβ)=tgα+tgβ

Respuestas

Respuesta dada por: carlrich040
1

Respuesta:

α=180°

β=180°

Explicación paso a paso:

 \frac{ \tan( \alpha ) +  \tan( \beta )}{ \cot( \alpha ) +  \cot( \beta )  }  =  \tan( \alpha )  +  \tan( \beta )  \\ 1 =  \cot( \alpha )  +  \cot( \beta )  \\  -  \cot( \alpha ) =  \cot( \beta )   \\  -  \frac{1}{ \tan( \alpha ) }  =  \frac{1}{ \tan( \beta ) }  \\  -  \tan( \beta ) =   \tan( \alpha )

ó

\frac{ \tan( \alpha ) +  \tan( \beta )}{ \cot( \alpha ) +  \cot( \beta )  }  =  \tan( \alpha )  +  \tan( \beta )   \\  \frac{ \tan(  \alpha ) +  \tan( \beta )  }{ \frac{1}{ \tan( \alpha ) }  +  \frac{1}{ \tan( \beta ) } } =  \tan( \alpha )   +  \tan( \beta )  \\  \frac{ \tan( \alpha )  +  \tan( \beta )   }{ \frac{ \tan( \alpha )  +  \tan( \beta ) }{ \tan( \alpha ) \tan( \beta )  } }  =  \tan( \alpha )  +  \tan( \beta )  \\  \tan( \alpha )  \tan( \beta )  =   \tan( \alpha ) +  \tan( \beta )  \\  \tan( \alpha )  \tan( \beta )  = -  \tan( \beta )  +  \tan( \beta )  \\  \tan( \alpha )  \tan( \beta ) = 0 \\  \tan( \alpha )  = 0; \:  \tan( \beta )  = 0 \\  \alpha  =180° ; \:  \beta  = 180°

Preguntas similares
hace 8 años