Los ingresos diarios de una pastelería, están dados por la función:
P(x) = 750x - 5x2 dólares.
Donde x es la cantidad de clientes. ¿Cuántos clientes deben atender para un máximo ingreso?
Respuestas
Respuesta dada por:
0
Dada la funcion P(x), el maximo de esta funcion es la derivada de dicha funcion P'(x) igual a cero.
P(x) = 750x - 5x²
P'(x) = 750 - 2(5)x = 750 -10x
Max = 750 - 10x = 0
- 10x = -750
x = 75
El maximo de la funcion P(x), es alcanzado cuando el valor de x es 75
P(x) = 750x - 5x²
P'(x) = 750 - 2(5)x = 750 -10x
Max = 750 - 10x = 0
- 10x = -750
x = 75
El maximo de la funcion P(x), es alcanzado cuando el valor de x es 75
riverosbelen97:
muchas gracias =)
Respuesta dada por:
0
Respuesta:
Dada la funcion P(x), el maximo de esta funcion es la derivada de dicha funcion P'(x) igual a cero.
P(x) = 750x - 5x²
P'(x) = 750 - 2(5)x = 750 -10x
Max = 750 - 10x = 0
- 10x = -750
x = 75
El maximo de la funcion P(x), es alcanzado cuando el valor de x es 75
Explicación paso a paso:
Preguntas similares
hace 7 años
hace 7 años
hace 7 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años