Resolver por método de reducción-eliminación (PASO A PASO)
1) x - y = 11
y + x = 21
2) 2x - 3y = 11
4x - 3y = -4
3) 9x - 5y = 9
9x + 6y = -1
Respuestas
Respuesta:
1) 2) 3)
Explicación paso a paso:
Método eliminación
Primero organizamos las ecuaciones en términos de x y y
x - y = 11 (1)
y + x = 21 (2)
x - y= 11
x + y = 21
Como el valor de la y es +1 y -1 procedemos a eliminar la y
x - y = 11
x + y = 21
----------------
2x = 32
Despejamos la x
x= 16
Como ya tenemos el valor de x, reemplazamos en la ecuación (1)
x - y = 11 (1)
16- y = 11
16-11 = y
y= 5
Para validar si los valores de x y y estan buenos, solo es reemplazar dichos valores en cualquiera de las dos ecuaciones
x - y = 11
16-5=11
11=11
2x - 3y = 11 (1)
4x - 3y = -4 (2)
Como los dos valores de y tiene -3y procedemos a multiplicar la ecuación (1) por menos uno *(-1)
2x - 3y = 11 (1) * (-1) = -2x+3y= -11
quedando las dos ecuaciones de la siguiente forma
-2x + 3y = -11
4x - 3y = -4
-------------------------
2x = -15
Despejamos la x
Reemplazamos el valor de x en ecuación (2)
4x - 3y = -4 (2)
Simplificamos el y da -30
-30-3y = -4
Despejamos la y
-3y = -4+30
-3y= 26
Para validar si los valores de x y y estan buenos, solo es reemplazar dichos valores en cualquiera de las dos ecuaciones
2x - 3y = 11 (1)
-15+26 =11
11=11
9x - 5y = 9 (1)
9x + 6y = -1 (2)
Como los valores de x ambos son positivos, se procede a multiplicar la ecuación (1) por menos uno *(-1)
9x - 5y = 9 (1) * (-1) = -9x+5y= -9
quedando las dos ecuaciones de la siguiente forma
-9x + 5y = -9
9x + 6y = -1
----------------------
11y = -10
Despejando la y
Reemplazando el valor de y en la ecuación (2)
9x + 6y = -1 (2)
Despejando la x
Para validar si los valores de x y y estan buenos, solo es reemplazar dichos valores en cualquiera de las dos ecuaciones
9x - 5y = 9 (1)
Simplificamos
9= 9
Espero te ayude el procedimiento