• Asignatura: Física
  • Autor: Pantalon456
  • hace 6 años

Dos jugadores de canicas se encuentran uno frente a otro con sus canicas en la mano. El juego consiste en lanzarlas al mismo tiempo en línea recta y hacer que ambas se golpeen. Si ambos se encuentran situados a 36 metros uno del otro y el jugador A lanza su canica a 2 m/sg y el jugador B a 4 m/sg en un movimiento rectilíneo uniforme. Calcula a que distancia del jugador B chocarán las canicas.

Respuestas

Respuesta dada por: Alexweyler
2

Respuesta:

el choque se produce a 12 metros del jugador A y a 24 m (36-12) del jugador B.

Explicación:


Pantalon456: Gracias!!
Alexweyler: de nada
Respuesta dada por: sabisaby84
11

Respuesta: el choque se produce a 12 metros del jugador A y a 24 m (36-12) del jugador B.

Explicación:

Datos

Considerando que la canica del jugador A se encuentra en el origen de coordenadas:

Canica A

X0=0 m

VA=2 m/sg

Canica B

X0=36 m

VB=-4 m/sg (se desplaza hacia el origen del sistema de referencia)

Resolución

Considerando inicialmente el sistema de referencia comentado en los datos, vamos a estudiar la ecuación de la posición de cada una de las canicas por separado.

En un m.r.u. la posición de un cuerpo en movimiento viene dada por la siguiente ecuación:

x=x0+v⋅t

Canica jugador A.

Sustituyendo los valores de este jugador en la ecuación del m.r.u. obtenemos que:

xA=0+2⋅t m ⇒xA=2⋅t m

Canica jugador B

Sustituyendo nuevamente en la ecuación, pero con los datos del jugador B:

xB=36−4⋅t m

Observa que al desplazarse hacia el origen de nuestro sistema de referencia su velocidad es negativa.

Ambas canicas impactarán cuando sus posiciones sean las mismas, es decir XA=XB, por tanto:

XA=XB⇒2⋅t=36−4⋅t⇒t=366⇒t=6 sg

Es decir, cuando transcurran 6 sg chocarán, pero ¿donde?. Como sabemos cuando se produce el impacto, basta sustituir ese tiempo en la ecuación de la posición de cualquiera de las 2 canicas.

XA=2⋅t⇒XA=2⋅6⇒XA=12 m

Por tanto, el choque se produce a 12 metros del jugador A y a 24 m (36-12) del jugador B.

Espero haberte ayudado :D


Pantalon456: Gracias!!
Preguntas similares