Respuestas
Respuesta:
En matemáticas, el conjunto de los números reales (denotado por {\displaystyle \mathbb {R} }\mathbb{R}) incluye tanto a los números racionales, (positivos, negativos y el cero) como a los números irracionales;[1] y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes[2] (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como √5, π, o el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII.[2]
Explicación paso a paso:
espero te ayude
me puedes dar coronita
Respuesta:
Explicación paso a paso:
el conjunto de los números reales (denotado por {\displaystyle \mathbb {R} }\mathbb{R}) incluye tanto a los números racionales, (positivos, negativos y el cero) como a los números irracionales;[1] y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes[2] (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como √5, π, o el número real log2, cuya trascendencia fue enunciada por Euler en el siglo XVIII.[