Respuestas
Respuesta:
a) (x + 1)(x - 2)
b) 3[(x + 1)(x + 10)]
c) (a - 6)(a + 8)
d) (a - 3b)(a + 5b)
e) (x - 7)(x + 3)
f) (m + 1)(m - 6)
Explicación paso a paso:
a) x² - x - 2 = x² - 2x + x - 2 = (x² + x) - (2x + 2) = x(x + 1) - 2(x + 1) = (x + 1)(x - 2)
b) 3x² + 33x + 30 = 3(x² + 11x + 10) = 3[x² + x + 10x + 10]
= 3[(x² + x) + (10x + 10)] = 3[x(x + 1) + 10(x + 10)] = 3[(x + 1)(x + 10)]
c) a² + 2a - 48 = a² + 8a - 6a - 48 = (a² + 8a) - (6a + 48) = a(a + 8) - 6(a + 8)
= (a - 6)(a + 8)
d) a² + 2ab - 15b² = a² - 3ab + 5ab - 15b² = (a² - 3ab) + (5ab - 15b²)
= a(a - 3b) + 5b(a - 3b) = (a - 3b)(a + 5b)
e) = -4x + x² - 21 = x² - 4x - 21 = x² - 7x + 3x - 21 = (x² - 7x) + (3x - 21)
= x(x - 7) + 3(x - 7) = (x - 7)(x + 3)
f) m² - 5m - 6 = m² + m - 6m - 6 = (m² + m) - (6m + 6) = m(m + 1) - 6(m + 1)
= (m + 1)(m - 6)