Determinar la medida de la altura del edificio Montoya, ubicado en la plaza cívica Boyacá, sabiendo que
cuando los rayos del sol forman un ángulo de depresión de 60° con dicho edificio, su sombra proyectada
sobre el piso horizontal mide 60 m.
Respuestas
La altura del edificio es de 60√3 metros. O de aproximadamente 103,923 metros
Procedimiento:
Se trata de un problema de razones trigonométricas en triángulos rectángulos.
Las razones trigonométricas de un ángulo α son las razones obtenidas entre los tres lados de un triángulo rectángulo.
Con la salvedad que el triángulo dado resulta ser lo que se llama un triángulo notable.
¿Qué son los triángulos notables?
Los triángulos notables son triángulos rectángulos que tienen ciertas características establecidas que permiten encontrar los lados de un triángulo sin utilizar el teorema de Pitágoras o las razones trigonométricas.
Los triángulos notables son figuras geométricas que poseen en sus vértices ángulos notables, por lo tanto las magnitudes de sus lados pueden ser calculadas gracias a dichos ángulos notables y estableciendo una relación entre los lados.
Los triángulos notables utilizan proporciones entre las relaciones de los lados y los ángulos de un triángulo rectángulo. Los lados de un triángulo no se pueden encontrar si se saben sólo los ángulos del triángulo, pero lo que sí se puede definir son las proporciones que los lados tendrán.
En estos triángulos se utiliza la letra “k” indicando que es una proporción entre sus lados.
Y esa letra k a la vez es una constante, que conocida permite hallar los lados de un triángulo notable con facilidad
Existen varios triángulos notables muy usados y conocidos y sumamente empleados en la resolución de problemas matemáticos, geométricos y sus relacionados. Pero no es la intención de hablar aquí de ellos.
Sólo mencionaremos el que se relaciona con el problema propuesto.
El cual dentro de los triángulos notables es el llamado 30-60 (por sus ángulos)
Este triángulo tiene un ángulo de 30° y otro de 60°, donde el lado opuesto al ángulo de 30° medirá 1k y el lado opuesto al ángulo de 60° medirá k√3 y la hipotenusa medirá 2k (o el doble de lo que mida el primer lado)
Esto se puede observar en al gráfico adjunto, además del planteo y resolución del ejercicio.
Representamos la situación en un triángulo rectángulo ABC el cual está conformado por el lado AB que equivale a la altura del edificio, el lado BC que representa la sombra del edificio y el lado AC que es la proyección de los rayos del sol con un ángulo de depresión de 60°
Por ser ángulos alternos internos- que son homólogos- se traslada el ángulo de 60° al punto C para facilitar la situación
Por ello se han trazado dos proyecciones horizontales
Solución
Método 1
Razones trigonométricas con ángulos notables
Conocemos
- Sombra del edificio = 60 metros
- Ángulo de depresión = 60°
- Debemos hallar la altura del edificio
Relacionamos estos datos con la tangente del ángulo
Como tenemos un triángulo notable
La altura del edificio es de 60√3 metros
Método 2
Hallando el valor de la constante k
La sombra del edificio es de 60 metros
Y al ser el lado adyacente al ángulo notable de 60° medirá 1k
Planteamos
Despejamos a la constante k
El valor de la constante k es 60
La altura del edificio es el lado opuesto al ángulo de 60° y mide k√3
Planteamos
Reemplazamos el valor de la constante k