• Asignatura: Matemáticas
  • Autor: adad12e1ie9qwi9sad9s
  • hace 6 años

Si: tgx + ctgx= 5, Hallar: T=√tgx + √ctgx

Respuestas

Respuesta dada por: edsonquispe102
0

Explicación paso a paso:

Respuesta

2,0/5

10

crack11112

Experto

71 respuestas

13.3 mil personas ayudadas

Respuesta

Explicación paso a paso:

escribiré para tg=tan y para ctg=cot ok quedando asi:

tanx^2-cotx^2 se procede a factorizar(diferencia de caudrados), como lo que quieres es el valor de "x" osea la solución se debe igualar a 0.

(tanx+cot)(tanx-cotx)=0

tenemos dos factores pero el que nos sirve es que que tiene signo negativo de intermedio, pues el otro factor da solución compleja, lo cual no nos interesa. Entonces

tanx-cotx=0 (usando la identidad: cotx = 1/tanx)

tanx-1/tanx=0

tanx^2-1=0

tanx^2=1

tanx=1

x= atan 1 (atan significa tangente inversa)

x=45°

Como encontramos que la solución es 45°, es importante comunicar que debido a que se trata de funciones continuas, las soluciones son infinitas. Para este ejercicio las soluciones empizan desde 45°. Como no te dan un intervalo para las soluciones, puede decir que una de las soluciones es 45°

Preguntas similares